学习啦 > 新闻资讯 > 学习资讯 > 怎样复习考研数学概率论最有效

怎样复习考研数学概率论最有效

时间: 淑贤744 分享

怎样复习考研数学概率论最有效

  很多同学在概率论这一版块得分率也不是很高。按理说是越简单的题目越容易得分。但是概率确恰恰相反。如何复习概率论才能拿到高分?下面就是学习啦小编给大家整理的复习考研数学概率论的方法,希望对你有用!

  复习考研数学概率论的方法

  第一章随机事件与概率

  本章需要掌握概率统计的基本概念,公式。其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。

  第二章随机变量及其分布

  本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。

  第三章多维随机变量的分布

  在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。掌握用随机变量的独立性的判断的充要条件。最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。

  第四章随机变量的数字特征

  本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。

  第五章大数定律和中心极限定理

  本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。

  第六章数理统计的基本概念

  重点在于“三大分布、八个定理”以及计算统计量的数字特征。

  第七章参数估计

  本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。

  概率统计备考应熟记四句口诀正态方和卡方(x2)出,卡方相除变F;

  若想得到t分布,一正n卡再相除;

  第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到分布。

  参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的阶原点矩作为总体的阶原点矩。估计矩估计法的解题思路是:

  (1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。

  (2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考纲上只要求掌握一阶、二阶矩。

  最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,我们给大家一个口诀,方便大家记忆。

  样本总体相互换,矩法估计很方便;

  似然函数分开算,对数求导得零蛋;

  第一条口诀的意思是用样本的矩来替换总体的矩,就可以算出参数的矩估计;第二个口诀的意思是把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后求参数的驻点,即为参数的最大似然估计。

  2018考研数学:概率论重要知识点梳理

  第一部分:随机事件和概率

  (1)样本空间与随机事件

  (2)概率的定义与性质(含古典概型、几何概型、加法公式)

  (3)条件概率与概率的乘法公式

  (4)事件之间的关系与运算(含事件的独立性)

  (5)全概公式与贝叶斯公式

  (6)伯努利概型

  其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,考生务必引起重视,

  第二部分:随机变量及其概率分布

  (1)随机变量的概念及分类

  (2)离散型随机变量概率分布及其性质

  (3)连续型随机变量概率密度及其性质

  (4)随机变量分布函数及其性质

  (5)常见分布

  (6)随机变量函数的分布

  其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。

  第三部分:二维随机变量及其概率分布

  (1)多维随机变量的概念及分类

  (2)二维离散型随机变量联合概率分布及其性质

  (3)二维连续型随机变量联合概率密度及其性质

  (4)二维随机变量联合分布函数及其性质

  (5)二维随机变量的边缘分布和条件分布

  (6)随机变量的独立性

  (7)两个随机变量的简单函数的分布

  其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视!

  第四部分:随机变量的数字特征

  (1)随机变量的数字期望的概念与性质

  (2)随机变量的方差的概念与性质

  (3)常见分布的数字期望与方差

  (4)随机变量矩、协方差和相关系数

  其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算

  第五部分:大数定律和中心极限定理

  (1)切比雪夫不等式

  (2)大数定律

  (3)中心极限定理

  其中:其实本章考试的可能性不大,最多以选择填空的形式,但那也是十年前的事情了。

  第六部分:数理统计的基本概念

  (1)总体与样本

  (2)样本函数与统计量

  (3)样本分布函数和样本矩

  其中:本章还是以概念为主,清楚概念后灵活运用解决此类问题不在话下

  第七部分:参数估计

  (1)点估计

  (2)估计量的优良性

  (3)区间估计

  其中:本章点估计是重点,是解答题的重灾区,一定要掌握点估计的两种解题步骤,至于(2)(3)两个可以了解下即可。

  数学考研概率论记忆口诀

  第一章随机事件

  互斥对立加减功,条件独立乘除清;

  全概逆概百分比,二项分布是核心;

  必然事件随便用,选择先试不可能。

  第二、三章一维、二维随机变量

  1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵

  2)连续必分段,草图仔细看,积分是关键,密度微分算

  3)离散先列表,连续后求导;分布要分段,积分画图算

  第五、六章数理统计、参数估计

  正态方和卡方出,卡方相除变F,

  若想得到t分布,一正n卡再相除。

  样本总体相互换,矩法估计很方便;

  似然函数分开算,对数求导得零蛋;

  区间估计有点难,样本函数选在前;

  分位维数惹人嫌,导出置信U方甜。

  第七章假设检验

  检验均值用U-T,分位对称别大意;

  方差检验有卡方,左窄右宽不稀奇;

  不论卡方或U-T,维数减一要牢记;

  代入比较临界值,拒绝必在否定域!


猜你喜欢:

1.考研数学复习如何巧用参考书

2.考研经验心得总结10篇

3.前辈教你如何复习考研数学

4.教你怎么复习考研数学及调整心态

5.2018考研数学的正确做题方法有哪些

6.2018考研数学做题技巧

3782908