怎样才能学好高等数学
怎样才能学好高等数学
高等数学是大学的一个虐心虐体级学科,没有一定的学习方法,是拿不下这门学科的。下面是小编分享的学好高等数学的方法,一起来看看吧。
学好高等数学的方法
要学好高等数学,首先要了解高等数学的特点。
1. 高等数学的特点
数学具有如下三个显著特点:
(1) 高度的抽象性—数学中只保留量的关系和空间形式,而舍弃了其他一切。数学的抽象程度大大超过了自然科学中一般的抽象。
(2) 严谨的逻辑性—在数学中要证明一个定理,就是要根据这个定理的条件和已有的数学公理及定理,用严谨的推理方法导出这个定理的结论。例如,用当今最先进的计算机也找不出不符合哥德巴赫猜想的情况,但只要没有数学意义下的证明,哥德巴赫猜想就永远只能是“猜想”,而不能成为“哥德巴赫定理”。
(3) 广泛的应用性—高等数学广泛的应用性是显而易见的。例如,掌握了导数、微分的概念和运算法则,既可以应用它刻画和计算物理学中的速度、比热容、密度等,又可以用它来刻画和计算产品总量的变化率和产品总成本的变化率等。掌握了定积分的概念和计算法则,就可以应用它求:曲线的长、曲线围成的面积、曲面围成的体积、物体的重心、力所作的功等。
2. 高等数学课的教学特点
对于作为基础理论课的高等数学,课堂教学是重要的教学环节。高等数学的课堂教学与中学教学的课堂教学相比较,有下述三个显著的差别:
(1) 课堂大—高等数学一般是一个学院的几个小班,或多个学院的几个小班合班上课。这些同学在学习基础、水平、理解接受能力等方面肯定有差异,但教师授课的基点,只能照顾大多数,不可能给跟不上、听不全懂的少数同学细讲、重复讲。
(2) 时间长—高等数学每上一次课,一般都是连续讲授两节甚至三节课。
(3) 进度快—由于高等数学的内容极为丰富,而学时又有限,因此平均每一大节课要讲授教材8~10页(有时还更多),加上大学与中学的教学要求不同,老师的讲课主要是讲重点、难点、疑点,讲思路。高等数学课绝对不可能像中学上数学课那样,一个内容教师不厌其烦地反复讲,然后再举大量的典型例题。
3. 注意抓好六个环节的学习
高等数学是同学们进大学后首先遇到的一门最重要但又不太好学的基础课,很多同学一开始对高等数学课不太适应。同学们要想尽快适应大学教学,学好高等数学,应注意下述六个学习环节:
(1) 预习—为了提高听课效果,可用少量时间对第二天老师要讲的内容先作预习。预习的目的是:对本次课的重点、难点、疑点有一个初步的、大概的了解。这样,在听课时就可以带着问题听讲,不仅可以提高学习兴趣,而且可以大大提高听课效果。另外,预习也是培养自学能力的一个重要环节。
(2) 听课—课堂上听教师讲授是同学们进大学学习获得知识的一个主要环节。因此,应带着充沛的精力,带着获取新知识的浓厚兴趣,带着预习中的疑点和难点,专心致志聆听教师是如何提出问题的,是如何分析问题的,是如何解决问题的?要紧跟教师的思路,听问题,听方法,听思路,听关键,并认真思考。上高等数学要作到脑、耳、眼、手并用,想、听、看、记共举。但核心是积极主动思考。
(3) 记笔记—高等数学教师讲课不是“照本宣科”。教师主要讲重点、难点、疑点、思路与方法以及教材上没有的典型例题。因此,记好课堂笔记是学好高等数学的一个重要的学习环节。记笔记的最大好处是:在课后翻开笔记,重点概念和定理、重要方法、典型例题以及要注意的问题便清晰地、一目了然地呈现出来,可以大大提高学习效率。必须提醒同学们注意的是,在听课时,听与思是中心,记是为听与思服务的,绝不能因为记笔记而影响听讲和思考。
(4) 复习—学习包括“学”和“习”两个方面。“学”是为了获取知识,“习”是为了消化、掌握知识,学而不习,知识不易消化和掌握;习而不学,知识不易丰富。孔老夫子说:“学而时习之”,就是这个道理。复习最好在当天或第二天进行,并将课堂笔记与教材结合起来进行。
俗话说:“眼过十遍不如手过一遍。”“好记性不如烂笔头。”华罗庚也曾经说过:“学习
数学,不能只看书,必须用笔来帮助思考。”复习时不能只看,应该对重要的结论和公式进行推导,对重要的典型例题进行演算,将笔记上的内容消化、吸收,真正进入自己的大脑。
(5) 做习题—当代著名数学家、教育家波利亚指出:“解题是智力的特殊成就,智力是人类的天赋,因此解题可以认为是人的最富有特征性的活动。”做习题是学好高等数学最为重要的、十分有效的手段。做习题是为了检验自己听课、复习的效果,也是听课、复习的继续,更是培养、提高运算能力,综合运用所学知识去分析问题和解决问题的重要手段。有些同学不复习就做习题,自认为“只要我能做出来就行了”,其实不然。第一,习题的内容并不能包含全部的内容;第二,仅做习题尚不能完整地建立起有关知识的系统结构;第三,不复习就做习题往往是做到哪儿,书、笔记就翻到哪儿,结果不但慢而差,而且以后一旦脱离书本和笔记,就会感到束手无策。
许多学生往往一边做作业,一边翻看教材、笔记中的定理、公式、例题。这是一个极不好的习惯,也是有些学生学习效率低下的一个重要原因。
科学、正确的做法是,在做习题之前,先花上一点时间,根据教材或笔记将老师在课堂上所讲的概念、定义、定理、公式法则等大致梳理一遍,对教材或课堂上所讲例题亲自动手推演一遍,然后才开始做习题。只有这样,才能通过做习题,充分消化、掌握课堂上所讲内容,做习题的目的也就基本达到了。
必须提醒同学们的是,做作业、做习题是为了顺利通过考试,是为了学好高等数学,而决不是为了应付教师。现在,一些学生想通过抄袭作业,蒙蔽教师,以此获得比较高的平时分数。这种看似“聪明”的想法其实是十分愚蠢的,事实已无数次的证明:抄袭作业的后果是通过考试的概率大大降低。也就是说,抄袭作业最后愚弄、欺骗的恰恰是抄袭者自己,而不是教师。这一点,请同学们切记!切记!
(6) 答疑—答疑也是大学学习的一个重要环节。俗话说:“学问、学问,有学有问”。郑板桥说:“学问二字要拆开看,学是学,问是问,今人有学而无问,虽读书万卷,只是一条钝汉尔。”培根也说过:“多问的人将多闻”。
同学们在学习高等数学期间,遇到疑问时(不管是听课、复习、作业中的)都应该及时去请教老师,切勿“拖欠”。还可以向老师较系统地反映自己学习、思想、生活中的疑惑,以及对某些问题的见解。总之,答疑是向老师学习、请教的良好时机,同学们应珍惜它,很好地利用它。
最后必须指出:学习方法不是唯一的,没有完全固定的模式。怎样学习效果最好,还要因人而异,上面谈到的学习方法,只能供同学们参考借鉴。
最后,用培根的一段话作为结束语,与同学们共勉。
“数学是科学大门的钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。”
高等数学的重要性
数学暨高等数学的重要性
数学主要研究现实世界中的数量关系与空间形式。在现实世界中,一切事物都发生变化,并遵循量变到质变的规律。凡是研究量的大小、量的变化、量与量之间关系以及这些关系的变化,就少不了数学。同样,一切实在的物皆有形,客观世界存在着各种不同的空间形式。因此,宇宙之大,粒子之微,光速之快,世事之繁,无处不用数学。 数学既和几乎所有的人类活动有关,又对每一个真心感兴趣的人有益。
恩格斯说:“要辩证而又唯物地了解自然,就必须掌握数学。”
英国著名哲学家培根说:“数学是打开科学大门的钥匙。”
著名数学家霍格说:“如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期就必定来到一座大门并且必须通过这座门。在这座门上用每一种人类语言刻着同一句话‘这里使用数学语言’。”
德国大数学家、天文学家,物理学家高斯说:“数学是科学的皇后,虽然她常常屈尊去为其他自然科学效劳,但在她与所有学科的关系中,她始终堪称第一。”
数学如今已经越来越被人们认为是在科学发展中具有高度重要性的学科。实际上,数学研究极大地开阔了人类思想的领域。今天,它已成为表达严格科学思想的媒介。随着科学技术的发展,人们越来越深刻地认识到:没有数学,就难以创造出当代的科学成就。科学技术发展越快越高,对数学的需求就越多越深。因为,自然科学各学科数学化的趋势,社会科学各部门定量化的要求,使许多学科都在直接间接地,或先或后地经历着一场数学化的进程(在基础科学和工程研究方面,在管理机能和军事指挥方面,在经济计划,甚至在人类思维方面,我们都可以看到强大的数学化进程)。现在已经没有哪一个领域能够抵御得住数学的渗透。数学的渗透力不仅具有广度,而且具有深度,它正在向着各学科的纵深渗透。所以联合国教科文组织在一份调查报告中强调指出:“目前科学研究工作的特点之一是各门学科的数学化。”反过来,科学技术的发展,又成为数学产生和发展的源泉与动力,数学正在一日千里地发展。据统计,世界上成千上万的数学工作者,每年提出大约二十万条新定理。数学论著浩如烟海,“数学大树”植根于科学与技术之沃土,枝繁叶茂,荫及各个领域。在科学王国中,数学有一个特殊的位置,它是一个专门的领域,但又为其他领域提供思维的工具。 为了使大家了解“高等数学”在数学中的地位,我们简要地介绍一点数学的历史。 从最一般的观点来看,数学的历史可以分为四个基本的、在性质上不同的阶段。当然精确划分这些阶段是不可能的。因为每一个相继阶段的本质特征都是逐渐形成的,而且在每一个“前期”内,都孕育乃至萌发了“后期”的内容;而每一个“后期”又都是其“前期”内容的持续发展阶段。不过这些阶段的区别和它们之间的过渡都能明显地表示出来。
第一阶段:数学萌芽时期。这个时期从远古时代起,止于公元前5世纪。这个时期,
人类在长期的生产实践中积累了许多数学知识,逐渐形成了数的概念,产生了数的运算方法。由于田亩度量和天文观测的需要,引起了几何学的初步发展。但这些知识都是片断的、零碎的,没有形成严格、完整的体系,更重要的是缺乏逻辑性,基本看不到命题的证明、演绎推理和公理化系统。
第二阶段:常量数学即“初等数学”时期。这个时期开始于公元前6、7世纪,止于17世纪中叶,延续了2000多年。在这个时期,数学已由具体的阶段过渡到抽象阶段,并逐渐形成一门独立的、演绎的科学。在这个时期里,算术、初等几何、初等代数、三角学等都已成为独立的分支。这个时期的基本成果构成了现在中学数学课程的主要内容。
第三阶段:变量数学即“高等数学”时期。这个时期以17世纪中叶笛卡儿解析几何的诞生为起点,止于19世纪中叶。这个时期与前一时期的区别在于,前一时期是用静止的方法研究客观世界的个别要素,而这一时期是用运动和变化的观点来探究事物变化和发展的规律。在这个时期里,变量与函数的概念进入了数学,随后产生了微积分。这个时期虽然也出现了概率论和射影几何等新的数学分支,但似乎都被微积分过分强烈的光辉掩盖了它们的光彩。这个时期的基本成果是解析几何、微积分、微分方程等,它们是现今高等院校中的基础课程。
第四阶段:现代数学时期。这个时期始于19世纪中叶,以代数、几何、数学分析中的深刻变化为特征。几何、代数、数学分析变得更为抽象。在此时期出现了几何的新发展,扩大了几何的应用对象与范围;出现了非欧几里得几何;提出了无限维空间的思想。代数对所研究的“量”也进行了扩展,提出了群、环、域及抽象代数。分析中也产生了新理论、新方向,如函数逼近论、实变函数论、复变函数论、泛函分析、微分方程定性理论、积分方程论等相继出现,使分析学的发展进入了一个新阶段。
我国高等院校习惯上将微积分学、微分方程初步和空间解析几何统称为“高等数学”,其中微积分学是高等数学的主要部分。高等数学的内容包括:函数、极限、连续;一元函数微积分及其应用;向量代数和空间解析几何;多元函数微积分及其应用;无穷级数;常微分方程等。
微积分的创立,与其说是数学史上,不如说是科学史上的一件大事。正如当代著名数学家柯朗所说:“微积分学,或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。这门学科乃是一种撼人心灵的智力奋斗的结晶;这种奋斗已经历了2500多年之久,它深深扎根于人类活动的许多领域,并且,只要人们认识自己和认识自然的努力一日不止,这种奋斗就将继续不已。”恩格斯指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。只有微积分学才能使自然科学有可能用数学来不仅仅表明状态,并且也表明过程、运动。”
微积分对许多工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。因
此在所有理工科院校中,微积分总是被列为最重要的基础理论课程之一。因为,一方面,微积分是学好其他理工课程(如大学物理、理论力学、材料力学、电工基础等)的基础,也是学好专业课的工具;另一方面,由于微积分是数学的基础,如果不掌握微积分是难以学好近代数学的。
如果不掌握微积分和一些近代数学分支,在科学技术的征途中将困难重重。出国访问交流的教师常能听到留学生这样说:刚到国外时,最大的困难是语言。但到一定时候语言过关了,却发现更大的困难是数学。因为有很多文献、书籍上遇到许多数学看不懂。数学也是一种语言,并且是现存的在结构与内容方面最完美的语言,胜过任何方言;实际上,因为每个民族都应懂得数学,它可以称为语言的语言。也可以说“数学是所有精密科学的语言”。一些学有成就的学者还形象地比喻:如果把一个科技工作者所应具备的知识结构比作一架飞机,那么,数学和外语就是这架飞机的两个机翼。数学教育要培养学生运用数学去分析、解决问题的能力,这种能力不仅表现在对数学知识的记忆,更主要的是掌握数学的思维推理方法。某些定理或公式可能只记忆于一时,但数学独有的思维与推理方法,却能终生受益。因为它们是创造的源泉,是发展的基础,也是科学技术人员学术水平的重要表现。因发现了X-射线而获得诺贝尔物理奖的英国实验物理学家伦琴,在回答“科学家需要什么样的修养”这一问题时,说:“第一是数学,第二是数学,第三还是数学。”被誉为“计算机之父”美籍数学家、物理学家冯诺伊曼认为“数学处于人类智能的中心领域”。
高等数学的重要地位
我们可以作这样一个比喻:如果将整个数学比作一棵参天大树,那么初等数学是树根,名目繁多的数学
第一文库网分支是树枝,而树干就是“数学分析、高等代数、空间几何”。这个粗浅的比喻,形象地说明这“三门”课程在数学中的地位和作用。
我们现在学习的高等数学是由微积分学、空间解析几何、微分方程组成,而微积分学是数学分析中主干部分,而微分方程在科学技术中应用非常广泛,无处不在。就微积分学,可以对它作如下评价。
微积分的发明与其说是数学史上,不如说是人类科学史上的一件大事。它是由牛顿和莱布尼茨各自独立地创立的。
恩格斯指出:“在一切理论成就中,未必再有什么像十七世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。”
美国著名数学家柯朗指出:“微积分,或曰数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具…这门学科乃是一种憾人心灵的智力奋斗的结晶。”
数百年来,在大学的所有理工类、经济类专业中,微积分总是被列为一门重要的基础理论课。
二、高等数学的教学特点
与初等数学相比,高等数学的课堂教育三个显著的差别:
①课堂大,高等数学一般是若干个小班合班上课,课堂上不允许同学们提问。
②时间长。大学课堂里的每一堂课一般都是100分钟,两节课连上,高等数学也不例外。
③进度快。由于高等数学的内容十分丰富,但学时又有限,因此每堂课不仅教学内容多,而且是全新的,教师讲课主要是讲重点、难点、疑点,讲概念、讲思路,举例较少。
三、学习高等数学要有自信心
如何学好该课程,这是学习者首先要面对的问题。数学具有很强的抽象性,正是这一点往往成为一些学习者从小学到大学的心理障碍。有人因为高中数学学得不是很好,因此在面对高等数学时,学习起来缺乏自信,不相信自己有能力看懂、学通这门课程。尽管数学是一门深奥的课程,但它又是一门有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
对于每位刚踏入大学的同学来说,要从简单、基础的数学思维转到对高度抽象、复杂的高等数学的学习中确实有一定的难度,但似乎越难的学科越具有其独特的魅力,使你不断地掏出心思去学它、懂它、理解它、体会它,从而真正感到它内在的美。
四、注意抓好学习的“五部曲”
①预习
为提高听课效率,每次上课的前一天,对第二天教师要讲的内容应做预习,即先自学教材,重点阅读定义、定理和主要公式。这就可使自己听课时心里有底,不至于被动。也可以知道重点、难点和疑点所在,带着问题去听课。
②听课
应带着充沛的精力和预习中的疑问,报着获取新知识的浓厚兴趣,用心听教师是如何提出问题、分析问题和解决问题的。由于教师在课堂上将系统讲述教学内容,这就给学生提供了解决问题的最好机会。听课时,要紧紧围绕教学内容听课,听问题,听解决问题的思路和方法,听结论,听应用,听内容的来龙去脉。
③复习
学习包括学与习两个方面。
学是为了获取知识,习是为了理解掌握知识。所以复习也是学习高数的重要环节之一。复习应先思索本节课的主要内容,抓住要领,提取精华,加深理解,强化记忆。复习应系统看书,并与老师的讲解和自己原来的理解相对照。然后找出精华和要点,着力在这些要点处下功夫,务必做到基本概念清楚、基本理论准确、基本思想方法学会、基本技能技巧熟练,为以后打下良好基础。一个单元学完以后要进行阶段复习,学期末要进行总复习,目的是将所学内容加深理解融会贯通,形成系统完整的知识结构,进而找出数学课程与其他课程的内在联系,将所学知识与思维方法应用于后继课程或实际问题中。
④做作业
学数学不做题是万万不行的,认真及时完成作业也是一个十分重要的学习环节。值得指出的是,由于在中学养成的习惯,有相当多的同学不复习就做习题,自认为“只要我能做出来就行了”,但学习高等数学则不同:第一,通常习题内容并不包含全部内容;第二仅做习题尚不能完全建立起有关知识的系统结构;第三,不复习就做习题往往是做到哪儿,书、笔记翻到哪儿,结果不但慢而差,而且以后一旦脱离书本和笔记时,就会感到束手无策。
许多同学都会出现这种情况,上课听懂了,课后就做不出题来了。现在懂了,以后又不会做了。数学必须要做,懂了不一定会做。对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。
学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做。
⑤答疑
答疑也是大学学习的一个重要环节。
同学们在学习中遇到疑问时(不管是听课、复习还是作业中的),都应及时请教老师,切勿“拖欠”。还可以向老师较系统地反映自己学习、思想、生活中的疑惑,以及对某些问题的见解,亦可以请教学习方法。
法国数学家笛卡尔指出:“没有正确的方法,即使有眼睛的博学者也会像瞎子一样盲目摸索”。学习必须讲究方法,但任何学习方法都不是惟一的。希望同学们能够尽快适应大学的学习生活掌握正确的学习方法,培养能力,提高综合素质。
猜你感兴趣:
1.数学学习小窍门