化学工程方面论文
化学工程是一门用来研究化学工业和其他相关产业在生产过程中所进行的化学过程和物理过程以及所使用设备的设计、操作和优化的工程学科。下文是学习啦小编为大家搜集整理的关于化学工程方面论文的内容,欢迎大家阅读参考!
化学工程方面论文篇1
探讨化学工程中的结构问题
1 结构的定义及其时空多尺度特征
“结构”在《辞源》中有如下定义:1)连接构架;2)物体构造的式样;3)诗文书画各部分的组织与布局。
结构具有多尺度和随时空变化的特征。如太阳系由太阳、地球、月亮等不同尺度的星体构成,它们在万有引力的相互作用下处于有序而不停的运动之中。又如一棵树由不同尺度的树干、树枝和树梢组成,相互依分数维的规律连接形成一个有机整体。化学工程同样具有多层次、多尺度并随时空变化的结构,一般可分为从分子到颗粒的小尺度区、从颗粒到单元设备的中尺度区和从单元设备到系统流程的大尺度区。各区中均有各自不同的结构。小尺度区中的结构,如超分子和离子液体结构。
2 多相流结构的预测
结构需要若干参数来定量表达,以工业快速流化床提升管中的流动结构为例,需要 8 个参数来描述,分别为密相表观气速、密相颗粒表观速度、聚团平均直径、密相空隙率、密相体积分率、稀相表观气速、稀相颗粒表观速度、稀相空隙率。李静海、郭慕孙在研究快速流态化床的局部结构时,提出了能量最小多尺度作用模型。
(Energy-Minimization Multi-Scale Model,EMMS)。该模型认为在快速床中流体用于颗粒的悬浮输送能最小,并以此作为系统的稳定性条件,与稀密两相的动量守恒方程、等压降方程、气固两相的质量守恒方程、聚团尺寸方程一起求解,成功预测了反映快速床局部结构的 8 个参数。借鉴 EMMS 模型的方法,结合研究不同床型、内构件、外力场对多相流动的影响规律,可望建立各种类型流态化床结构参数的预测模型。
3 结构—性能关系
众所周知,物质的分子结构与其热力学特性密切相关;材料的微观结构、介观结构与其宏观的物化和力学性能密切相关,如金刚石与石墨同样都是由碳元素组成的物质,由于碳原子排列的方式不同,金刚石坚硬无比,而石墨则非常柔软。同理,以尺度大小不同、空间分布不均的气泡、液滴、颗粒、聚团组成的化工多相流的局部结构与其流动、传递、反应行为密切相关。
图 1 为离子液体的结构图。各离子之间通过氢键形成网络结构,因此具有较高的黏度。图 2为微乳液中的胶团(水包油)和反胶团(油包水)的结构示意图,虽然其尺度微小,仅 10~100 nm,但结构复杂。以反胶团为例,其核心为自由水,核心周围是结合水层,再往外为表面活性剂和助剂双亲分子层,最外是油相。该结构与微乳液的萃取分离和反应性能密切相关。图 3 是由微观像探头(镜头直径 3 mm)拍摄到的快速循环流化床中的局部结构的照片,从中可见快速流化床中存在颗粒的聚集相(聚团)和颗粒的分散相(稀相)两相结构,聚团的形状不规则,大小不相同,这种结构对快速流化床中的传递与反应具有直接的影响。图 4 是纳微颗粒鼓泡流化床层流化时和断气塌落后的照片。纳微颗粒表面过剩的自由能使其具有聚集成团的特性。从图 4 可见,床下部是大尺度聚团,床中部是中等尺度聚团,床上部是小尺度聚团。颗粒聚团内部的颗粒与气流接触很差,严重影响传递和反应速率。图 5 为气固鼓泡流化床的照片。其中,图 5a 的床中无内构件,床层由气泡相和乳化相组成,气泡尺寸较大;图5b 的床中有多块百叶窗型横向挡板,床层由气泡相和乳化相组成,但气泡尺寸较小且均匀。气泡会形成气体短路,严重降低气固接触效率。图 6为工业流化床中设置的组合式横向斜片挡板,可以有效破碎气泡和颗粒聚团,斜片导向可进一步强化气固接触。图 7 为工业萘氧化制苯酐流化床反应器的内部结构图,床底的气体分布板可使气流均匀分布,床中的垂直换热管内构件可强化气固接触,减少放大效应。由于这种多相流结构的难以预测性和构效关系的复杂性,传统的化学工程采取平均的方法,必然造成预测的偏差,成为化学工程放大的瓶颈问题。
4 多相流结构的调控——散式化方法过程
工业多相反应和分离设备中局部结构由气泡、液滴、颗粒和聚团等尺度不同的分散相和气、液介质连续相组成。这种分散相的尺寸越小,它们在连续相介质中分散得越均匀,相间接触界面就越大,越有利于传质、传热和化学反应;同时如果相间的滑移速度越高,则相间界面越薄,界面的更新速度越快,同样有利于传质、传热和化学反应。影响结构的最主要因素是系统或设备条件(包括颗粒和流体的性质、设备与内构件的结构与形状、外力场的影响等)和操作条件(包括温度、压力、气液固三相各自的流速与流向、稳态操作与动态操作等)。当前引人注目的微通道与膜反应和分离技术的优势也在于可有效调控结构,得到尺度均匀而微小的气泡或液滴,强化相间接触。
5 多相流结构与计算机模拟
20 世纪 80 年代以来,随着计算机科学和测试技术的飞速发展,计算流体力学和过程的计算机数值模拟应运而生,人们可以通过实验和理论分析建立数学模型,并采用高效计算机对复杂过程进行计算机数值模拟,进一步通过多种实验参数的测量对模拟结果加以验证。这方面的工作已经取得了很大的进展。流化床结构的预测、优化调控以及规模放大的最终解决,无疑应当寄托于计算机的数值模拟和仿真技术。当前用于气固流化床数值模拟的数学模型主要有两流体模型(Two-Fluid Model,TFM)、颗粒轨道模型(ParticulateTrajectory Model,PTM)和流体拟颗粒模型(Pseudo-Particle Model,PPM)。巨大的计算量使 PTM 模型和 PPM 模型的应用受到限制,应用 PTM 模型和 PPM 模型对含有大量颗粒的工业系统的模拟目前还不现实。两流体模型将颗粒也视为流体来处理,由两套分别描述流体和颗粒相的流体动力学方程组来描述,其间通过相间作用项来封闭,两相同在 Euler 坐标系下处理。该模型主要是在微观足够大和宏观足够小的尺度上进行平均化,这使得这些微元适于在近平衡系统获得简单的本构方程,从而可以通过数值的手段预测系统的时空变换。由于系统的复杂性和局部非均匀结构的存在,真正能满足这种要求的微元尺度与反应器宏观尺度相比往往过于微小,目前的超级计算机速度也很难满足其需要,所以不得不采用加大尺度的微元,其内部含有丰富而显著的非均匀结构,这时现有的本构方程已经不再适用。目前多数具有应用价值的模拟成果都是应用双流体模型得到的。FLUNT、CFX 等以双流体模型为内核的商业软件被广泛采用。
结束语
化工多相流反应与分离设备中存在颗粒、气泡、液滴、聚团,且其尺寸大小不同、空间分布不均匀。该局部不均匀结构与流动、传递、反应行为密切相关。传统的化学工程忽视局部多尺度不均匀结构而采取平均的方法,造成对“三传一反”行为预测的偏差,成为化学工程放大的瓶颈问题,应引起学术界关注。近年来在结构参数的预测理论研究、结构与传递和反应的关系理论研究、结构的优化调控理论与方法研究以及结构参数与两流体模型相结合的多相流计算机模拟研究等方面已经取得一定进展。但面对复杂得多尺度结构问题,需要付出更多的努力。
化学工程方面论文篇2
浅谈化学工程技术在化学生产中的应用
摘 要:随着我国经济的迅速发展和科技水平的逐渐提升,促使着化学工程行业也在不断的朝前发展,尤其是社会对化学行业求量的逐日增大,这就要求化学工程行业必须要加快对化学技术的应用,大幅度的节省施工时间,提高化学工程的建设效率。因此,本文重点对化学工程技术在化学生产中的应用进行阐述,展望未来化学工程技术的发展方向,以求对化学行业的相关工作者提供可参考信息。
关键词:化学工程;应用;发展方向
近几年由于我国科学技术水平的进步,自动化技术的应用在各行各业中逐步扩散起来,比如化学工程技术在化学生产中的应用也逐渐受到人们的关注,化学工程行业关系着人们的日常生活,影响着其他行业的发展,所以对在化学生产过程中的应用进行研究探析,是十分有必要的实时话题。
化学工程技术是一门主要研究化工生产过程中研究和开发以及过程装置的设计、制造和管理的综合性技术。化学工程技术的发展对于强化化工生产过程,提高产品质量,降低原料和能量消耗,对于企业的技术改造以及新技术的开发起着重要作用。
1 新型反应技术的研究
1.1 超临界化学反应技术
超临界液体是指在温度和压力都处于临界点之上时,此时状态处于液体和气体之间,具有这两种状态的双重性质。这种状态的流体不仅在化学工业、生物化工、食品工业有广泛的应用,而且还在医药工业等领域应用很广泛,已经显示出巨大的魅力,极具发展前景。近年来,化学界将超临界水氧化法应用到保护环境的领域,但是都处于初级发展阶段,很不成熟。
1.2 绿色化学反应技术
绿色化学是指对环境不会造成污染的,有利于保护环境的化学工程。绿色化学简单说就是采取化学的技术和方法来减少或消除那些对人类有害的、妨碍社区安全的、对生态环境会产生不利影响的原料或溶剂等。绿色化学是将污染从源头进行消除的工程,因此很彻底,这主要包含原子经济性和高选择性的反应,生产出对环境有利的材料,并且回收废物循环利用的一门科学技术。
1.3 新的分离技术
从广义上看,分离强化首先是对设备的强化,随后对生产工艺进行强化,整体来说就是只要能将设备变小、将能量转化效率提高的技术都是化工分离技术强化的结果,这样不仅有利于实现可持续发展,同时也是化工分离技术的重要技术与主要趋势之一。然而,古老的化工分离技术原理:利用沸点的不同,将不同的组分从分离塔里分离出来。随着科技的发展及国内外的分工合作共同研究除了大量新的分离技术,具有广阔的发展前景,但是这些在应用中同样也存在着很多问题,此项研究对相关分子蒸馏的基础理论探究比较少,没有在理论上充分说明和指导,对设计刮膜式分子蒸馏器也没有深入的研究。随着信息技术和科学的不断进步和发展,分离技术也随之得到改善,取得了长足的进步,逐渐信息技术引入到分离技术的研究与开发上,例如在研究热力学和传递的性质、多相流等方面,这些都是信息技术发生功效的主要分离技术,再如分子模拟大大提高了预测热力学平衡和传递性质的水平。对分子的设计加速了可以加速分离,因此对研究和开发新的高效的分离剂有深远的意义。信息技术的引进对于分离过程的深入产生了重要的作用,而且还能提高工作效率。
2 传热过程中一些新的研究进展和方向
2.1 微细尺度传热学研究进展
微细尺度是从空间尺度和时间尺度微细的探讨和研究传热学规律,现在传热学中已经自成一个分支,发展前景广阔。当物体的特征尺寸远大于载体粒子的平均尺寸即连续介质时假定依然会成立,但是由于尺度的微细,原来的假设的影响因素也会相对的发生变化,这就导致了流动和传入规律发生着变化。目前,微米、纳米科学已经取得长足的进步,受到人们的广泛关注,诸多领域都是围绕微细尺度传热学进行研究的。其中高集成度电子设备、微型热管、多空介质流动传热等多项研究都是微热尺度传热学研究取得的丰硕成果。
2.2 强化传热过程的研究进展
这项研究主要是从改进换热器设备的形式入手,提高传热的效率,并想办法改进设备使其持续对外放热,这种改进包含发明新的传热材料和改进生产工艺,将过去的设计进行优化等方法。
2.3 传热理论研究进展
近年来,传热研究者一直都致力于滴状冷凝在工业生产上的应用,但至今仍未能很好的实现,主要问题是如何获得实现滴状冷凝,并且使其冷凝表面寿命延长。改变冷凝界面的性质,将滴状冷凝应用到工业上进行传热改造是传播热学研究的主要热点之一。沸腾的传热方式不仅在机械、动力和石油化工等传统的工业之中广泛使用,而且在航空航天技术等高科技领域也广泛的应用着。长期以来,人们都在对液体发生核态沸腾的主要原因和具有高换热强度的机理进行着深入的探究。由于沸腾的现象是复杂和多变的,这些都导致了我们不能利用常规的计算方法来计算出沸腾所能传输的热量。到现在为止,加热器表面受到水沸腾时产生的气泡的影响,这一问题是最需要得到解决的,也是研究的重点所在,对沸腾传热进行计算大都采取机理模型,这种方法存在严重的缺陷就是计算的准确率很低,而且需要大量的实验做基础,所以目前应用的范围较窄,目前没有能较准确计算沸腾传热的计算式,因此我们有另辟蹊径,从新的角度来探究和研究问题,从基本理论出发,提出新的理论与计算方法或研究出新的模型,将数学与之相结合计算出沸腾所传出的热量,这将成为今后研究的重中之重。
3 化学工程学科未来的发展动态
科学的进步使大量新的技术和产品能源不断涌现,并且在先进技术的引导下得到了广泛的应用,这就为化学工程的研究提出了新的问题,那就是如何为新的产业的形成和发展提供良好的服务并不断形成新的完整的理论,化学工程的发展就此进入一个新的发展阶段。在学科研究的方法上更多的注重学科的交叉,更多的研究材料其中包含信息和化学、生物与化学、能源与化学、环境与化学相结合的工程学科,这些都为化学工程的发展提出了新的发展方向和研究课题,为化学的发展做了良好的铺垫。
4 结束语
电气工程中使用电气自动化技术可以提升相关设备的有效性,可以实现整个工程的信息化、网络化和效率化,可以使电气工程的数据采集、电网调度更加高效便捷,可以满足目前经济环境下的刚性需求,更好地适应社会的发展规律。
参考文献
[1]陈伟.浅析化学工程技术在化工生产中的应用[J].科学专论,2013(1).
[2]马巍.浅谈化学工程的现状与发展方向[J].黑龙江科技信息,2011(26).
[3]张燕.化学工程在化工生产的应用探析[J].技术与化学工程,2013(9).