计算机论文范文3000字
在以互联网为主题的今天,越来越多的政府机构和商业单位等都开始建立起自己的管理信息系统,并成为其信息化建设中的一个重要部分。下面是学习啦小编为大家推荐的计算机论文,供大家参考。
计算机论文范文一:二次雷达S模式的关键技术
1引言
S模式是近年发展起来的一种新的空中交通监视技术,相对传统的A/C模式二次监视雷达,采用了选址询问,扩展了数据链,扩充了系统容量,降低了系统内部干扰,因而在美、欧等国家和地区得到了广泛应用,同时也是国际民航组织推荐使用的一种空管模式。而我国空管发展比较缓慢,目前还普遍使用的是A/C模式,但随着空中交通的发展,飞机密度的增加,势必也会向S模式监视系统发展。正因为我国目前还没有采用S模式,因而有关S模式的系列标准也没有颁布,系统性论述的相关文献也很少。有些文献认为,通过对传统A/C模式二次监视雷达进行简单的升级就可以实现S模式,笔者认为S模式除了在工作频点上与传统的A/C模式相同外,是完全不同的两个系统,特别是S模式的数据链功能,以及地面站的协同功能,使得S模式的控制相当复杂;同时,S模式地面二次监视雷达是一个逐步更换的过程,在实施过程中,S模式二次监视雷达必须考虑兼容现有的传统的A/C模式,因而S模式二次监视雷达必须经过全面细致的设计才可能充分发挥S模式的效能。本文主要针对实现地面二次监视雷达的关键技术进行论述。
2S模式二次监视雷达系统简述
S模式二次监视雷达系统是在传统的A/C基础上发展起来的,也是采用询问应答协同的工作方式,因而S模式二次监视雷达系统包括具有S模式能力的地面二次雷达询问机和机载应答机两部分。国际民航组织为每架飞机分配了一个唯一地址(24位地址)[1],地面站可以对飞机进行选址询问,询问发射频率为1030MHz,接收频率为1090MHz,询问上行信号如图1所示,前2个脉冲为同步脉冲,P5为询问旁瓣抑制脉冲,P6为信息脉冲,采用DPSK调制,信息位长56bit或112bit,56bit称为短信号格式,主要用于监视,112bit称为长信号格式,除用于监视外还需要传输数据信息,也就是数据链功能都采用长信号格式,其码速率为4MHz。应答下行信号如图2所示,前4个脉冲是同步脉冲,后面56个脉冲或112个脉冲也分为长格式和短格式,采用脉位调制,码速率为1MHz。国际民航组织(ICAO)附件10中分别对上行和下行定义了S模式的24种格式,其中上行格式4、5、11、20、21、24用于二次监视雷达监视系统,0和16号格式用于ACAS系统,为以后扩展保留了17种格式;下行格式中,4、5、11、20、21、24用于二次雷达监视系统,0和16号格式用于ACAS系统,17、18、19号格式用于ADS-B,其中19号格式为军用。在二次监视雷达使用的几种格式中,11号格式是全呼询问和应答,主要用于对空中目标的捕获,以获取空中目标的S模式地址,4号和5号格式主要用于监视,以替代传统的A/C模式,4号格式传输高度信息,5号格式传输编号信息,20、21号格式主要用于数据传输,同时具有监视功能,24号格式主要用于扩展通信功能。在S模式数据链的功能上主要分为通信A、通信B、通信C和通信D4种,上行20、21号格式主要用于通信A,下行20、21主要用于通信B,上行24号格式用于通信C,下行24号格式用于通信D。通信A又分为广播通信A和一般通信A,广播通信A用于地面站向覆盖范围内的空中目标发送广播信息,一般通信A用于地面站对特定的飞机发送信息;通信B又分为地面发起的通信B(GICB)、空中发起的通信B(AICB)和广播通信B等[1-2]。
3S模式二次监视雷达组成及工作原理
S模式地面二次监视雷达主要组成如图3所示,包括天线系统、发射机、接收机、信道管理器、S模式回答处理器、A/C模式回答处理器、航迹处理、数据管理以及接口管理等部分。天线系统包括∑、Δ、Ω三通道单脉冲天线,和传统A/C模式二次监视雷达一样,为了减少垂直反射的影响,采用大垂直孔径天线。由于S模式询问机需要同时发射P6脉冲和旁瓣抑制脉冲(P5脉冲),发射机需采用主、辅两个发射机,主发射机发射信号脉冲和同步脉冲,辅助发射机发射旁瓣抑制脉冲,接收机采用三通道接收,∑、Δ通道接收机配合∑、Δ单脉冲天线,实现单脉冲测角,∑、Ω实现接收旁瓣抑制功能,分别采用S模式和A/C模式两个独立的回答处理器,实时的对每次回答进行信号处理,以得到每次回答的解码值;A/C模式凝聚器主要对驻留波束内的A/C模式回答进行凝聚,剔除异步干扰等;信道管理器主要对波束内要处理的S模式询问(包括数据传输任务)以及A/C模式询问进行时序上的管理;链路管理器主要完成通信任务与跟踪目标的配对、对活动列表的管理。
4S模式二次监视雷达关键技术
4.1S模式与A/C模式的兼容性
虽然S模式采用了点名询问,但在跟踪前是不知道空中目标的S模式地址,当S模式二次监视雷达工作在多站情况下,可以通过相邻地面站的引导实现对目标的跟踪,但大多情况下需要自身对目标进行捕获,只有捕获锁定后的目标才能进行点对点的数据传输。S模式目标的捕获是采用全呼询问,跟踪和数据传输采用选址询问,锁定后的目标不再对S模式全呼询问进行应答,为了方便管理和减少干扰,实际实施时,采用全呼和选址询问分时进行,其时序如图4所示,包括一个全呼询问周期跟一个轮询周期,在轮询周期内实现选址询问。考虑到从传统的A/C模式升级到S模式需要一定的时间过渡,因而国际民航组织在制定S模式标准时,充分考虑了A/C模式与S模式的兼容问题,使得A/C模式二次雷达监视系统与S模式二次雷达监视系统可以共存。在全呼询问时,对传统的A/C模式信号进行了改进,增加了P4脉冲,如图5的信号格式称为组合询问信号格式,对于传统的A/C模式应答机只识别P1~P3脉冲,并按识别的P1与P3的时间间隔确定询问模式,对于S模式应答机需要识别P4脉冲,P4为宽脉冲(1.6μs)时表示对所有应答机进行全呼询问,P4为窄脉冲(0.8μs)时表示仅对A/C模式应答机进行询问,S模式应答机接收到该信号不应答。但在实际使用中,人们更喜欢采用UF11号仅S模式全呼和短的组合询问格式(仅A/C模式回答)组成的时序对空中目标进行全呼询问,如图6所示,这样在同样覆盖范围内的S模式应答机和A/C模式应答机具有相同的接收时间窗,A/C模式应答机也有足够的时间从抑制A/C模式(仅S模式全呼)中恢复。
4.2S模式信道管理
由于S模式既要完成监视功能又要完成数据链功能,同时还要兼容传统的A/C模式,因而如何有序地安排和管理地面雷达在波束覆盖范围内目标的通信和监视任务显得尤为重要。S模式地面二次监视雷达需要一个专用的信道管理器来完成这些任务,其原理主要包括信道控制、事务预处理、目标列表更新、轮询进程安排和事务更新,如图7所示。信道控制实时监视时钟和天线指向,保证所有S模式和A/C模式活动都发生在恰当的时间和序列(波束驻留时间),每间隔一定时间,信道控制就指示事务预处理器提供即将进入波束的飞机清单;事务预处理查询包含目标预测位置的监视文件,如果将要进入波束的飞机有上行链路信息或下行链路信息需处理,那么事务预处理就会确定要完成这些任务所需要处理的数目和类型,事务预处理为每架飞机创建一张表单,表单包括一套要完成所有待处理的监视与通信任务所需要的完整说明;目标列表更新器组合这些表单为活动列表,并定期更新,表单上的条目是由事务预处理器所阐明的数据块。新目标中的数据块由事务预处理提供,并且被并入此列表,而那些离开波束或完成服务的目标,都会被清除。为了更好地估计算一个询问与应答的非冲突时序,活动目标列表是以目标距离递减的方式进行排序。事务更新是针对具有多任务的目标,对于有多任务的目标原则上是安排连续进行,如果某项任务成功进行,就会修改目标的数据块,以安排下一任务进行;如果某项任务进行不成功,会安排在下一时序继续进行;轮询进程安排信道管理器的输出时序,其原则是基于目标的距离,最远的先问,后续安排的询问目标,其回答不会与前一询问的回答交替,如果没有足够的时间来完成一个完整的时序安排,那么就会安排到下一循环进行。图8是一个信道管理轮询实例,在第1个循环实现了对4架飞机的询问,在第2个循环实现了对2架飞机的询问,从该图也可以看出,合理进行信道管理可以大大提高信道的利用率。
4.3S模式链路管理
S模式地面二次监视雷达为S模式地-空数据链提供物理层和部分链路层的服务,S模式数据链功能主要包括通信A、广播通信A、GICB(Ground-in-itiatedComm-B)和AICB(Air-initiatedComm-B)等多种形式,实现这些数据链功能需要与地面数据链处理器(GDLP)和机载数据链处理器(ADLP)配合工作,如图9所示。对于进入地面二次监视雷达覆盖区的空中目标,地面二次监视雷达是靠定向天线实现与指定目标的通信,对一特定的飞机,每次扫描的波束驻留时间只有几十毫秒,对于飞机密度较大的区域,如果通信任务较多,势必有些目标的通信任务不能在一次扫描完成,需要多次扫描,如何有序地实现与空中目标的通信,在天线指向目标前将具有通信任务的目标和任务种类提供给信道管理器,需要建立一个活动信息列表,这个活动信息列表是对地面二次雷达覆盖区域内的所有S模式目标列表,对新跟踪的目标需要及时加入活动列表,并建立与GDLP的链路连接,对飞出覆盖区的目标及时终止与GDLP的链接,并从活动信息列表中剔除,二次雷达只从GDLP接收在覆盖区内目标的通信任务,对活动列表中具有通信任务的目标进行长格式询问,对没有通信任务的进行监视询问(短格式询问),在活动信息列表的建立中,询问机需要将通过监视获得的目标位置信息与通过GDLP获得的通信任务进行配对,并分类进行管理,对未完成的通信任务进行更新。图10是GICB链路管理实例。
4.4S模式目标的捕获
S模式二次监视雷达主要采用选址询问方式进行工作,但这只是在建立了目标跟踪的情况下,在对目标跟踪之前,需要对目标进行捕获、锁定,以最大限度地减少系统的异步干扰。一旦被捕获,S模式飞机对随后的S模式全呼叫询问进行闭锁,此闭锁条件由S模式地面站通过S模式选址询问控制,如果因任何原因致使一架飞机在18s左右没有接收到地面站的闭锁命令选址询问,将自动解锁,以便普通S模式捕获可重新捕获飞机。如何快速捕获S模式目标,可以采用多种捕获技术,包括多站捕获与闭锁、非选择性捕获与闭锁、集群询问机捕获与闭锁,以及随机捕获等多种方式。S模式为每个具有共同覆盖区的地面询问机分配了了一个询问识别符(Ⅱ码)和监视识别符(SI码),并要求应答机能够根据Ⅱ码和SI码具有多站闭锁,针对不同的Ⅱ码和SI码锁,对应多达78个地面询问机的全呼捕获询问;非选择捕获与闭锁,是建立在Ⅱ=0的基础上,与S模式子网协议不兼容,不能用于普通的S模式捕获;集群询问机捕获与闭锁,是地面使用相同询问标识符的询问机通过地面网路协调它们的监视和通信任务,不需要每个询问机都去捕获目标;随机捕获,S模式地面站用一个特殊全呼叫询问命令进行询问,此命令指示飞机用一个特定的小于1的应答概率进行应答,由此降低的应答率意味着有些全呼叫应答被正确接收,并且这些飞机将被捕获。一旦一架飞机被捕获,它就被闭锁,就不会再干扰其他尚未被捕获飞机的全呼叫应答,这一过程一直重复,直到所有的飞机被捕获,这种捕获文献[3]中已有详细介绍。
4.5单脉冲技术
S模式二次监视雷达要求一次询问、应答就能获得目标信息,这其中包括目标数据传输信息和监视获得的目标位置信息,而传统的滑窗技术需要多次询问才能获得理想的位置信息,很难满足S模式的要求,因而对于S模式地面询问机必须采用单脉冲技术,其原理如图11所示。通常二次监视雷达采用比幅单脉冲技术进行测角,根据接收到的∑、Δ通道的脉冲的幅度值计算出Δ/∑,由Δ/∑与偏离天线的法向值(OBA)的关系查表得到OBA值,与实时采集的天线指向值相加或相减得到目标的方位角,根据∑、Δ通道的相位超前滞后关系,判断目标在法线左边还是右边,以决定目标方位是加OBA值还是减OBA值。此外单脉冲技术除用于测角外,也用于多目标处理。
5S模式二次监视雷达接口要求
S模式二次监视雷达接口主要分为内部接口和外部接口,内部接口主要包括地面站询问机与询问天线的接口、询问机与本地控制盘的接口、询问机与维护显示器的接口,与天线的接口包括∑、Δ、Ω三通道射频接口和天线指向数据,天线指向信号采用增量编码方式,一路方位脉冲,一路正北脉冲;与本地控制盘的接口主要完成本地控制盘对询问机的工作参数进行设置,并实时监视询问机的状态,采用RS422接口;与本地维护监视器的接口主要对目标的航迹进行监视,采用RS422接口或网络接口。与外部设备的接口包括与空中交通管制中心的接口、与GDLP的接口、与本地用户的接口、与其他邻近地面站系统工作接口,实现S模式数据链功能与空管中心的监视接口和GDLP接口是必需的,与邻近地面二次监视雷达接口在多站协同工作时需要,对外接口都采用双冗余网络接口,如图12所示。与空中交通管制中心接口,主要向交通管制中心传输目标点迹/航迹报文,通常采用网络接口。由于我国还没有相应标准,我们参照欧洲航空组织监视数据交换报文CAT48《单站雷达目标发送报文》[4]执行。与地面数据链处理器GDLP的接口主要与GDLP进行双向数据交换,将从飞机上提取的数据发送给GDLP,把GDLP传来的数据通过二次监视雷达发送给飞机,同样采用网络接口,参照欧洲航空组织监视数据交换报文CAT18《S模式数据交换信息》[5]执行。
6S模式二次监视雷达链路计算
S模式二次监视雷达链路计算同样遵从二次雷达的计算公式[6]:式中,Prcc为接收机输入口的接收功率,单位W;Ptrd为发射机在输出口的发射功率,单位W;GA为地面二次监视雷达天线增益;GT为应答机天线增益;LI为二次监视雷达到天线之间电缆损耗和;Lt为应答机到天线之间电缆损耗和;Lat为大气衰减;λ为波长,单位m;R为地面站和应答机天线之间的距离,单位m。在下行链路计算时,考虑到S模式必须采用单脉冲技术进行测角,系统应该留有足够的余量。
7结束语
S模式二次监视雷达具有监视、数据链功能,相比传统的A/C模式具有很多优势,是国际民航空中交通监视技术的发展方向,既可以采用单站工作方式也可以采用多站地面协同工作方式,其控制流程相当复杂。国内这方面的文献很少,国际民航组织也仅仅给出了一些规范性的要求,对其实施方式并没有作详细的规定。随着我国民用航空事业的发展,空中交通密度的增加,在从传统A/C模式监视系统过渡到S模式监视系统的过程中,建议针对S模式二次监视雷达的具体特点,制定和完善一系列S模式二次监视雷达的实施标准及规范,才能逐步推行,这样才能最大发挥S模式的效能。
计算机论文范文二:认知无线电对无线电监察的影响研讨
常用的单节点频谱感知技术有匹配滤波、能量检测和周期性检测3种[4]。(DSA)DSA是基于频谱检测的结果,在授权用户中进行可用频段的分配,以达到系统的最优化。由于CR网络中的用户对带宽、信道和所处的位置都是随机的,传统的分配算法不能完全适应,所以要有一种新的动态频谱分配算法。目前基于CR的DSA主要是基于频谱共享池(Spectrumpooling)这一策略,也就是将分配给不同业务的频谱合并成一个公共的频谱池,并将其划分为若干个子信道,而子信道是频谱分配的最小单元[5]。频谱共享池的DSA实质是一个信道受限的最优化问题。在保证相对公平和最小化干扰的情况下,最大化信道的利用率。CR系统中每个CR用户的发射功率是对其他用户造成干扰的主要原因[6],所以要对CR系统内的用户进行功率控制。功率控制的目标是在不对授权用户造成有害干扰的前提下,增加认知用户的发射功率或者是接入更多的认知用户,提高信道利用率和CR网络的通信容量。
认知无线电带给无线电监测的挑战
认知无线电环境下,无线电站台的技术参数如发射功率、调制方式、编码方式和传输速率等都将随着环境的变化而不断变化,从而提高了无线电监测对信号的跟踪要求,如灵敏度、动态性[7]等;主用户、次用户以及非法用户等多重使用者身份的出现也使得频谱的合法性使用分析变得更加复杂。
静态的频谱分配机制,也就是将某一段固定的频谱指定给某个通信业务类型的用户,得到这种授权的用户才能使用该频段,不同类型的授权用户之间不能共享。认知无线电技术通过找出不同频率、不同时间、不同地理位置的频谱“空洞”,并实现频谱的动态共享,两种共享方式见图1。认知无线电技术采用动态频谱共享的方式显然能够大大提高频谱的利用率,但是,对于无线电管理和无线电监测,它也带来了挑战。首先,需要对频谱进行重新分配和规划,对于已经分配的频率,需要重新评估其合理性,对于不适应现有技术发展的频段要重新整合和分配;其次,不同用户共享频谱,使得同一频段内用户类型增多,加之各种接入的认知设备标准不一,极有可能加大电磁环境的干扰;最后,对于某一频段上的频段数据统计和分析也要做相应的改变,必须找到更有效的数据统计和分析方式,来描述特定频谱整体的使用状况。
无线电监测系统对信号的监测包括合法用户信号的识别和干扰、非法用户信号的监测识别。对于现有的监测系统,被监测频段的唯一使用者即授权用户,其信号为唯一合法的信号。通常该频段授权信号的发射功率、能量、出现的时间以及背景噪音等都有详细的记录,并写入了监测数据库,对授权信号的识别甚至可以简单地通过判别监测频段是否存在信号即可。使用认知无线电技术,某一频段上的合法信号不止是授权用户的信号,正常接入的认知用户信号也是合法信号,认知信号的参数和出现的时间都是可变的,对监测信号不能简单地通过判定频段上信号的有无来确定该信号是否为授权用户信号。在认知无线电环境下,干扰信号的来源更加多样化,由于大量认知用户的接入,即使所有认知用户都是按照自身不对授权用户造成干扰的情况进行通信,但是从系统的整体来看,还是有可能对授权用户造成干扰。无线电监测系统必须采用新的机制对特定频段的干扰水平进行划分和测定。认知信号在认知用户漏检以及认知用户异常的情况下有可能造成干扰,对于认知用户造成的干扰必须通过无线电监测发现和纠正。此外,现有系统不能对非法信号和认知信号进行有效的区分,会把授权信号以外的其他信号作为非法信号处理,所以,必须采用新的监测技术对违法的信号和认知信号进行区分。
基于认知无线电的新型监测系统
现有的无线电监测系统已经不能胜任新环境下的监测要求,必须对现有的无线电监测系统进行改进,形成一个针对认知无线电环境下的新型无线电监测系统以便应对上文所述的种种挑战。新的监测系统需要从两个方面对现有无线电系监测统进行升级改进:一是完善现有无线电监测的不足之处;二是采用认知无线电技术之后,针对原有监测系统不能适应的地方或做改进,或采用新的方法,使其能够合理地解决新环境下无线电监测的问题。新型监测系统模型如图2所示,该系统是一个联网联合监测的网络拓扑系统,它由多个监测子系统构成,每个监测子系统由天线系统、接收机系统、监测数据库系统和测向定位系统组成。
在认知用户与授权用户共存的网络中,授权用户受到潜在的干扰情况可能为:淤认知用户漏检,错判当前频段可用,接入当前频段会与授权信号发生“碰撞”,从而干扰授权用户的通信;于认知用户异常,如,认知设备受到攻击或者设备故障变成异常认知设备,不遵守认知无线电接入的规则,自身不进行功率控制,很可能对授权用户造成干扰;盂非法信号占用频段。新型的无线电监测系统应该能够检测出以上几种情况。新型监测系统首先对监测信号进行干扰评估,由此建立授权用户可承受认知用户的干扰图,通过对在监测过程中出现的认知信号和干扰评估结果的对比,可以粗略地判别出认知信号是否已经造成了干扰。在干扰识别过程中,通过频谱分析、信号分类、信号估计提取等步骤,逐步将信号归类,最终识别信号归属。具体的识别过程见图3。
监测数据库的建设和管理的好坏直接影响到整个监测系统性能的优劣。所以合理的设计监测数据库,对无线电监测起着重要的作用。新型监测系统数据库维护的重点之一在于建立各种信号的样本数据库和统计分析数据库,如图4所示。信号特征数据库用于对信号特征的描述,便于与监测信号对比,识别合法信号和发现不明信号。而数据统计分析数据库主要是管理频段的使用情况,如占用度的统计、电磁环境的分析等,对于认知无线电下的信号数据进行统计和分析,需要更进一步细化步骤。
新型的无线电监测系统则采用联网控制,通过融合相邻监测站的监测信号,完成联网信号的采集。各个监测站通过与具有强大数据处理能力的监测处理中心相连,完成对信号的联合监测,采用一定的模型对不同监测站接收到的数据进行综合分析,得出与原始信号最接近的分析结果。此外,通过联网控制,可以对干扰实施联网排查。监测中心可以通过网络连接控制的监测设备终端,并且终端监测设备不需要具有强大的数据处理功能,只负责简单的信号采集,降低了终端设备和人工成本。监测数据可以实时传输至监测的数据处理中心,并快速得到反馈,对干扰信号的判断更为精准。不同的监测数据中心可以实现网络共享,还可以通过更高一层的监测中心进行联合调度,实现更大范围的联合监测任务。
监测系统测向仿真结果
测向算法是查找信号源的关键,为后续处理提供支撑。本节对目前两种基于空间谱的高性能测向算法(MUSIC算法[8]和ESPRIT算法[9])进行了仿真。仿真参数为:信号1、信号2和信号3为信号序列长度为500的随机信号,入射角分别为10毅、30毅和60毅,迭代次数为360次,输入信噪比为10dB。MUSIC算法和ESPRIT算法仿真结果分别如图5和表1所示。一般来说,信噪比越高,快拍数越多,精度也就越高。对于MUSIC算法,其中信号1的测向结果为10.23毅,信号2的测向结果为30.17毅,信号3的测向结果为60.23毅。相比之下,ESPRIT算法精度更高。两种算法也各有其局限性:如果到达的信号中有相干信号,那么理论上其空间相关矩阵的秩就会比实际到达的信号数小,这样,观察到的谱峰数与到达的信号数不相等。因此,对于相干信号,MUSIC方法就不再适合。而ESPRIT算法是直接以输入信号的参数进行估值,在实际情况中会受到噪声的影响,结果可能会受到影响。应根据实际情况予以选择。
结语
本文完成了对认知无线电环境下新型监测系统模型的雏形的设计。新型系统能够在信号识别、干扰检测、数据库维护、联网监测等各方面适应认知无线电环境,解决了现有无线电技术不能适应认知无线电环境的难题。尽管只是系统的初步雏形,但对于未来监测系统的设计具有较好的参考价值。