学习啦>论文大全>技术论文>

激光加工技术论文

时间: 家文952 分享

  激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是学习啦小编整理了激光加工技术论文,有兴趣的亲可以来阅读一下!

  激光加工技术论文篇一

  谈机械制造激光加工技术

  摘要:激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。

  关键词:机械 制造 激光 加工 技术

  激光是通过入射光子使亚稳态高能级的原子、离子或分子跃迁到低能级受激幅射(不是自发幅射)时发出的光,也可解释为“光受激幅射后发射加强”。它是由于受激发射的发光放大现象。激光具有单色性好、方向性强、能量高度集中等特性,因此在军事、工农业生产和科学研究的很多领域中得到了广泛应用。激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。

  激光加工具有以下特点:激光加工不需要加工工具,所以不存在工具损耗问题,很适宜自动化连续操作,可以在大气中进行。功率密度高,几乎能加工所有的材料,如果是透明材料(如玻璃),只要采取一些色化和打毛措施,仍可加工。加工速度快,效率高,热影响区小。因不需要工具,又能聚焦成极细的光束,所以能加工深而小的微孔和窄缝(直径可小至几微米,深径比可达10以上),适合于精微加工。可通过透明材料(如玻璃)对工件进行加工。

  1、激光器

  1.1 气体激光器

  通常用二氧化碳激光器。

  二氧化碳激光器的激光管内充有二氧化碳,同时加进一些辅助气体,这些辅助气体有助于提高激光器输出功率。二氧化碳激光器是目前气体激光器中连续输出功率最大、能量转换效率最高的一种激光器,能以大功率连续输出波长10.6的激光,而且方向性、单色性及相干性好,能聚焦成很小的光斑。缺点是设备体积大,输出瞬时功率小,而且是看不见的红外光,调整光束位置不方便。

  1.2 固体激光器

  包括红宝石激光器、钇铝石榴石激光器、钕玻璃(掺钕的盐酸玻璃)激光器等。固体激光器的特点是体轵小,输出能量大,可以打较大较深的孔;但其能量转换效率低,制造较难,成本高。而二氧化碳激光器则具有造价低,结构简单,工作效率高,打孔质量好等优点;不足是体积大,占地面积大。

  2、影响激光加工的因素

  激光主要用于各种材料的小孔、窄缝等微型加工,虽然也有生产率和表面粗糙度的要求,但主要是加工精度问题,如孔和窄缝大小、深度和几何形状等。因工艺对象的最小尺寸只有几十微米,所以加工误差一般为微米级。为此,除保证光学系统和机械方面精度外,还有光的特殊影响。

  2.1 输出功率与照射时间

  激光输出功率大,照射时间长,工件所获得能量大。当焦点位置一定时,激光能量越大, 加工孔就大而深,锥度小。照射时间一般为几分之一至几毫秒。激光能量一定时,照射时间太长会使热量传散到非加工区;时间太短则因能量密度过大,蚀除物的高温气体喷出,也会使激光使用效率降低。

  2.2 焦距与发散角

  发散角小的激光束,经短焦距的聚焦物镜以后,在焦面上可以获得更小的光斑及更高的功率密度。光斑直径小,打的孔也小,且由于功率密度大,打出的孔不仅深,而且锥度小。

  2.3 焦点位置

  焦点位置低,透过工件表面的光斑面积大,不仅会产生喇叭口,而且因能量密度减小而影响加工深度。焦点位置太高,同样,工作表面尖斑大,进入工件后越来越大,甚至无法继续加工。激光的实际焦点在工件表面或略低于工件表面为宜。

  2.4 光斑内的能量分布

  激光束经聚焦后,在焦面上的光点实际上是一个直径为d的光斑,光斑内能量分布不均。中心点的光强最大,离开中心点迅速减弱,能量以焦点为轴心对称分布,这种光束加工出来的孔是正圆形的。若激光束能量分布不对称,打出的孔也不对称。

  2.5 激光的多次照射

  激光照射一次,加工孔的深度大约是孔径的五倍左右,且锥度较大。激光多次照射,深度将大大增加,锥度减小,孔径几乎不变。但是,孔加工到一定深度后,由于孔内壁的反射、透射以及激光的散射或吸收及抛出力减小,排屑困难等原因,使孔前端的能量密度不断减小,加工量逐渐减少,以致不能继续加工。

  第一次照射后打出一个不太深而且带锥度的孔;第二次照射后,聚焦光在第一次照射所打的孔内发散,由于光管效应,发散的光在孔壁上反射的下深入孔内,因此第二次照射后所打出的孔是原来孔形的延伸,孔径基本上不变。多次照射的焦点位置固定在工件表面,不向下移动。

  2.6 工件材料

  各种工件材料的吸收光谱不同,经透镜聚焦到工件上的激光能量不可能全部被吸收,有相当一部分能量被反射或透射散失,吸收效率与工件材料吸收光谱及激光波长有关。在生产实践中,应根据工件材料的性能(吸收光谱)选择激光器。对于高反射和透射率的工件表面应作打毛或黑化处理,增大对激光的吸收效率。

  3、激光加工的应用

  3.1 激光打孔

  利用激光打微型小孔,目前已应用于火箭发动机和柴油机的燃料喷嘴加工、化学纤维喷丝头打孔、钟表及仪表的宝石轴承打孔、金刚石拉丝模加工等方面。

  激光打孔不需要工具,适合于自动化连续打孔。采用超声调制的激光打孔,是把超声振动的作用与激光加工复合起来。把激光谐振腔的全反射镜安装在超声换能器变幅杆的端面上作超声振动,使输出的激光尖锋波形由不规则变为较平坦排列,调制成多个尖锋激光脉冲。由此可以增加打孔深度,改善孔壁粗糙度和提高打孔效率。

  3.2 激光切割

  激光切割具有如下特点:(1)可以用来切割各种高硬度、高熔点的金属或非金属材料。(2)切缝窄,可以节省贵重材料(如半导体材料等)。(3)速度快,成品率高,质量好。目前,激光切割已成功应用于半导体材料、钛板、石英、陶瓷等材料的切割加工中。

  3.3 激光焊接激光焊接与激光打孔的原理稍有不同

  焊接时不需要那么髙的能量密度,使工件材料气化、蚀除,只需将工件加工区烧熔粘合在一起。因此,激光焊接所需的能量密度较低,通常可用减小激光输出功率来实现。

  脉冲输出的红宝石激光器和钕玻璃激光器适合于点焊;而连续输出的二氧化碳激光器和YAG激光器适合于缝焊。

  激光焊接过程迅速,被焊材料不氧化,热影响区小,适合于热敏感元件焊接。

  参考文献

  [1]哈尔滨工业大学,上海工业大学.机床夹具设计(第二版).上海:上海科学技术出版社,1989.

  [2]刘文剑等.夹具工程师手册.哈尔滨:黑龙江科学技术出版社,1992.

  [3]李庆寿.机床夹具设计.北京:机械工业出版社,1984.

  [4]孔巴德.机床夹具图册.北京:机械工业出版社,1984.

点击下页还有更多>>>激光加工技术论文

2492093