浅谈中小学数学教育论文
当前,我国新一轮基础教育课程改革正在深入推进,数学的人文价值更明显地凸现出来。下面是学习啦小编为大家整理的浅谈中小学数学教育论文,供大家参考。
浅谈中小学数学教育论文篇一
《 再谈小学数学良好思维习惯的培养 》
摘要:思维习惯直接影响着学生学习的好坏、能力的发展。再谈小学数学良好思维习惯的培养。
关键词:小学数学,思维习惯
所谓思维的有序性就是思考问题时有条理、按一定顺序地进行。养成了这个良好习惯,思考时就不遗漏、不重复,这是良好思维活动的开端,教师应当把这个习惯的培养摆在首位,并时刻提醒学生。如《计算圆柱的表面积》时,可以结合实物演示,让学生按照以下几个步骤来思考:①根据公式S=pr2计算一个底面积,②用一个底面积乘2得到两个底面积之和,③根据公式S=ch计算侧面积,④把两个底面积与侧面积相加即是这个圆柱的表面积。又如教学《分数基本应用题》时,可以引导学生按照“四步曲”来完成:一找关键句,即找出表述两个量之间关系的句子;二确定单位“1”,即找出关键句中是把哪个量看作单位“1”;三写关系式,写出“单位‘1’的量×分率=另一个量”这样的乘法式子;四列式并计算出结果。
二、思维的多向性
所谓思维的多向性就是指学生能从数学知识的各种不同角度,运用不同的思维方法去解决同一个问题,具有灵活的解题思路,养成多角度解决问题的习惯。在教学中,教师可以通过开展一题多解训练,有效开拓学生的思维空间,使思维更灵活。如教学《鸡兔同笼》问题:鸡兔共有20个头,54条腿,鸡兔各有多少只?可以引导学生采用列表法解答:假设鸡兔各有10只(折中法),发现腿的总条数比原来多,说明兔的只数多了,需调少一点,通过调整再调整,调至腿的总条数与原来同样多为止;可以引导学生采用假设法即算术法解答:①假设全部是鸡,一共有20×2=40(条)腿,相差的腿条数有54—40=14(条),是由于每只兔少算了4-2=2(条)腿,从而得到兔14÷2=7(只),鸡20-7=13(只);②假设全部是兔,一共有20×4=80(条)腿,相差的腿条数80-54=26(条),是由于每只鸡多算了4-2=2(条)腿,从而得到鸡26÷2=13(只),兔20-13=7(只);还可以引导学生采用方程法解答:设兔子为X只,则鸡为(20-X)只,列方程为:4X+(20-X)×2=54,解得X即兔子7只,鸡13只;或设鸡为X只,则兔子为(20-X)只,列方程2X+(20-X)4=54,同样解得X即鸡13只,兔子7只。
又如:一架飞机所带的燃料最多只能使用6小时,已知飞出的时速为每时600千米,回来每时750千米,飞机最多飞出多少千米就应返回?①从分数知识出发,把飞出的总路程看作“1”,则飞出的时间为1/600,回的时间为1/720,根据“具体数量÷对应分率=单位‘1’的量”得算式6/(1/600+1/720);②从比例知识出发,由于出去和回来所走的路程相等,飞机去回所用的时间比正好是速度比的反比,再把6小时按比例分配。
三、思维的深刻性
所谓思维的深刻性是指善于透过表面现象,发现事物的本质和规律,它来自于对事物本质属性的理解,对非本质属性的排除。为此教师可以变换思维方式,如用尺子量一张纸的厚度,让学生学会运用归一思想量出N张纸的厚度再除以N;还可以进行情节叙述的变式如“甲筐水果比乙筐多10千克”可以变为:①乙筐再填上10千克和甲筐一样多。② 甲筐去掉10千克和乙筐同样多。③甲筐给乙筐5千克后,甲乙两筐同样多。④甲筐给乙筐4千克后,则比乙筐还多2千克。⑤甲筐给乙筐6千克后,则比乙筐还少2千克等。
此外加强“一题多变”的训练,既是提高学生审题能力的重要途径,又是培养学生解题思维深刻性的重要策略。如教学分数基本应用题“面粉有40千克,大米的重量是面粉的3/4,大米有多少千克?”在让学生理解题意正确解答后,可以把第二个条件“大米的重量是面粉的3/4”改为① “是大米重量的3/4”②“大米重量比面粉多3/4”③“比大米重量少3/4”④“大米重量比面粉重量的3/4还少3千克”等,让学生在比较中进一步理解分数应用题的结构,提高解题水平,同时也大大增加了课堂容量。又如在低年级教学与乘法有关的解决问题时,可以安排如下习题来训练思维的深刻性:1、我家种了2行树,一行6棵,一行4棵,一共种了多少棵树?2、我家种了2行树,第一行6棵,第二行也是6棵,一共种了多少棵树?通过分析判断第一题用加法计算,“2行”是多余条件,干扰学生,要学会选择条件进行解题,第二题除了“2行”是多余条件,还要帮助学生从过去的加法算式中跳出来,运用新学的乘法知识来计算比较简便。
四、思维的创造性
创造性思维是指人在实践学习活动中,根据自己的目标展示出来的一种主动的、独创的、富有新颖特点的思维方式,它是在原有经验材料和学得知识的基础上进行合理性和突破性的创造组合,形成新的概念或新成果。对于小学生来说,一条新颖的解题思路,编一道应用题,小发现,小创造等都是创造性思想的结果,教师均需加以保护。如教学《圆的面积计算公式的推导》这课时,教材介绍了把一个圆平均分成若干等份,拼成一个近似的长方形,近似长方形的面积与圆的面积相等,长相当于圆周长的一半,宽相当于圆的半径,从而得到圆的面积计算公式S=pr2。此时教师可以激励学生:圆可以转化成近似的长方形,还能转化成其它学过的图形吗?通过学习小组的不断操作、反复验证,学生们发现:①可以把圆转化成近似的梯形,梯形的上下底之和相当于圆周长的一半,高相当于圆的直径(即2r);②还可以把圆转化成近似的三角形,三角形的底相当于圆周长的四分之一,高相当于半径的4倍(即4r)。这样,不仅让学生感受到转化思想在数学学习中的作用,还增强了学生的创新意识。
总之,思维习惯直接影响着学生学习的好坏、能力的发展。只有爱动脑,勤质疑,敢于标新立异,才能不断地发现和理解数学知识,形成各种数学能力。良好思维习惯是在日复一日的学习活动中逐步形成的,离不开教师的引导和帮助。每一位数学教师都应充分关注学生良好思维习惯的形成,把良好习惯的培养贯穿在教学的全过程。
浅谈中小学数学教育论文篇二
《 小学数学课改论文 》
内容提要:通过数学的教学培养学生的创新意识,就要在数学课堂教学中培养学生的创新精神和创新能力。只有改革数学课堂教学,即创新课堂教学方法——激发学生的学习数学兴趣,激励学生不断探索数学问题,培养学生获取数学知识的能力,尊重学生在数学学习上的个体差异,才能实现学生的数学创新意识的培养,在数学课堂教学中真正落实素质 教育。
关键词:数学课堂教学 创新精神 创新能力 新课标 学生
创新是素质教育的核心;创新是一种精神。***多次强调“创新是一个民族的灵魂,是国家兴旺发达的不竭动力”。诺贝尔物理奖得主美籍华人朱棣文曾一针见血指出:“ 中国学生学习很刻苦,书面成绩很好,但动手能力差,创新精神明显不足,这是与美国学生的主要差距。”我认为这一评价非常中肯、切中时弊。那么我们的学生创新精神和创造能力是怎样失去的呢?根本原因在教育本身,负担太重—— 考试频繁、资料繁多、死记硬背、作业机械重复,磨灭了学生学习的兴趣和对数学现象的好奇心,题海战术泯灭了学生的创造性思维,学生参加数学活动几乎是一种被动的行为。
当前,在新课标的指导下,在创新性的课堂教学中,我们必须牢固地确立以学生为中心的教育主体现,以学生能力 发展为重点的教育质量观,以完善学生人格为目标的教育价值观。教师应充分地尊重学生的个体差异,把学生看作发展中的人,可发展的人,人人都有创造的潜能;学生要创造性地学数学,数学教学就要充满创新的活力;于是,在数学课堂教学中,教师应意识到创新课堂教学方法。
一、创设良好的学习情境,激发学生学习的主动性、积极性,培养学生的创新思维。
我们的课堂教学形式单调,内容陈旧,知识面窄,严重影响学生对数学的全面认识,难以激起学生的求知欲望、创造欲。新课标中指出:“数学教学应从学生实际出发,创设有助与学生自主学习的问题情境”。认知心 理学关于学习机制的最新研究成果揭示了学习主动性的本质是认识主体的主动建构。只有当认识主体意识到是其自身在影响和决定学习成败的时候,生动建构才有可能实现。从认识论意义上看,知识总是情境化的,而且在非概念水平上,活动和感知比概念化更加重要,因此只有将认识主体置于饱含吸引力和内驱力的问题情境中学习,才能促进认识主体的主动发展。
鉴此,教师必须精心创设教学情境,有效地调动学生主动参与教学活动,使其学习的内部动机从好奇逐步升华为兴趣、志趣、理想以及自我价值的实现。教师就教学内容设计出富有趣味性、探索性、适应性和开放性的情境性问题,并为学生提供适当的指导,通过精心设置支架,巧妙地将学习目标任务置于学生的最近发展区,。让学生产生认知困惑,引起反思,形成必要的认知冲突,从而促成对新知识意义的建构。因此,在创造性的数学教学中,师生双方都应成为教学的主体。在一节数学课的开始,教师若能善于结合实际出发,巧妙地设置悬念性问题,将学生置身于“问题解决”中去,就可以使学生产生好奇心,吸引学生,从而激发学生的学习动机,使学生积极主动参与知识的发现,这对培养学生的创新意识和创新能力有着十分重要的意义。如:讲勾股定理时,教师可出营造情境——建房施工放线,在没有三角板和量角器的情况下,怎样使得拉出的线框每个角都是直角,为什么?华东师大出版社的课改教材七年级(下)6.3节时,可设疑“为了装饰墙报,准备用长80分米的彩条围一个长方形,但好的作品太多,怎样围才能张贴出更多的作品呢?”这样设计,迅速点燃学生思维的火花,使学生认识了数学知识的价值,从而改变被动状态,培养学生主动学习精神和独立思考的能力。
二、鼓励学生自主探索与合作交流,利于学生创新思维的发展。
解决问题的关键是 教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同 发展的过程。”弗赖登塔尔曾经说:“学一个活动最好的方法是做。”学生的学习只有通过自身的探索活动才可能是有效地,而有效的数学学习过程不能单纯地依赖模仿与记忆;建构主义学习理论认为,学习不是一个被动吸收、反复练习和强化记忆的过程,而是一个以学生己有知识和经验为基础,通过个体与环境的相互作用主动建构意义的过程。创造性教学表现为教师不在于把知识的结构告诉学生,而在于引导学生探究结论,在于帮助学生在走向结论的过程中发现问题,探索 规律,习得方法;教师应引导学生主动地从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在课堂教学中应该让学生充分地经历探索事物的数量关系,变化规律的过程。如例:完成下列 计算:1+3=?
1+3+5=?
1+3+5+7=?
1+3+5+7+9=?
┅ ┅
根据计算结果,探索规律,教学中,首先应该学生思考,从上面这些式子中你能发现什么?让学生经经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程。教学中,不要仅注意学生是否找到规律,更应注意学生是否进行思考。如果学生一时未能独立发现其中的规律,教师就鼓励学生相互合作交流,通过交流的方式发现问题,解决问题并发展问题,不仅能将“游离”状态的数学知识点凝结成优化的数学知识结构,而且能将模糊、杂乱的数学思想清晰和条理化,有利于思维的发展,有利于在和谐的气氛中共同探索,相互学习,同时,通过交流去学习数学,还可以获得美好的情感体验。
三、注重开放题的教学,提高创新能力。
沿袭以久的教育内容和方法不利于培养学生的创新品质。数学作为一门思维性极强的基础学科,在培养学生的创新思维方面有其得天独厚的条件,而开放题的教学,又可充分激发学生的创造潜能,尤其对学生思维变通性、创造性的训练提出了新的更多的可能性,所以,在开放题的教学中,选用的问题既要有一定的难度,又要为大多数学生所接受,既要隐含“创新”因素,又要留有让学生可以从不同角度、不同层次充分施展他们聪明才智的余地,如:调查本校学生的课外活动的情况,面对这个比较复杂的课题,一定要给学生以足够的时间和空间进行充分的探索和交流。首先学生要讨论的问题是用什么数据来刻画课外活动的情况,是采用调查和收集数据。接着的问题是“可以调查那些呢?”对此,学生可能有很多想法,对学生提供的办法不要急于肯定或否定,应让学生通过实际操作和充分讨论,认识到不同的样本得到的结果可能不一样,进而组织学生深入讨论:从这些解释中能作出什么判断?能想办法证实或反驳有这些数据得来的结论吗?这是一个开放题,其目的在于通过学习提高学生的发现问题、吸收信息和提出新问题的能力,注重学生主动获取知识、重组应用,从综合的角度培养学生创新思维。
四、尊重学生个体差异,实施分层教学,开展积极评价。
美国心 理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略;在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
课程改革以轰轰烈烈地在全国范围展开,如何探索一条适合学生主动发展、有利于学生创新精神、实践能力、合作品质培养的教学方式,成为在新课改中教育工作者面临的主要课题。我在教学工作中,体会到课程改革后的数学课堂应创设富有探索性、挑战性的问题,让学生通过自主探索和合作交流,不仅能更好地激发学生的学习兴趣,更重要的是培养学生的创新意识和创造能力,实施课堂教学的过程中,注重引导学生在课堂活动过程中感悟知识的发生、发展与变化,培养学生主动探索、敢于实践、善于发现的 科学精神。将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生的主动学习与创新意识的培养落到实处。
有关浅谈中小学数学教育论文推荐: