学习啦 > 学习方法 > 考试试卷 >

2024初一上册数学期末试卷及答案

时间: 梦荧0 分享

数学是学习和研究现代科学技术必不可少的基本工具。那么关于初一上册数学期末试卷怎么做呢?以下是小编整理的一些初一上册数学期末试卷,仅供参考。

2024初一上册数学期末试卷及答案

初一上册数学期末试卷

一、精心选一选:(本大题共8小题,每题3分,共24分)

1.下列运算正确的是 ( )

A、2x+3y=5xy B、5m2m3=5m5 C、(a—b)2=a2—b2 D、m2m3=m6

2.已知实数 、 ,若 > ,则下列结论正确的是 ( )

A. B. C. D.

3.等腰三角形的一条边长为6,另一边长为13,则它的周长为 ( )

A. 25 B. 25或32 C. 32 D. 19

4.命题:

①对顶角相等;

②同一平面内垂直于同一条直线的两直线平行;

③相等的角是

对顶角;

④同位角相等。其中假命题有 ( )

A.1个 B.2个 C.3个 D.4个

5. 如果关于x、y的方程组x-y=a,3x+2y=4的解是正数,那么a的取值范围是 ( )

A.-2<a-43 C.a<2 D.a<-43

6. 下图能说明∠1>∠2的是 ( )

7.某校去年有学生1 000名,今年比去年增加4.4%,其中住宿学生增加6%,走读生减少2%。若设该校去年有住宿学生有x名,走读学生有y名,则根据题意可得方程组 ( )

A. B.

C. D.

8.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需 ( )根火柴.

A. 156 B. 157 C. 158 D. 159

二、细心填一填:(本大题共10小题,每空2分,共22分)

9.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为 吨。

10. 若方程组 ,则3(x+y)﹣(3x﹣5y)的值是 .

11. 已知10m=3,10n=5,则103m-n= .

12.计算 的结果不含 和 的项,那么m= ;n= .

13.命题“两直线平行,同旁内角相等”是 命题(填“真”或“假”).

14.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是 .

15.端午佳节,某商场进行促销活动,将定价为3元的水笔,以下列方式优惠销售:若购买不超过10支,按原价付款;若一次性购买10支以上打八折.如果用30元钱,最多可以购买该水笔的`支数是_______.

16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC, 则∠B = °.

17.若不等式组 的解集为3≤x≤4,则不等式ax+b<0的解集为 .

18.若方程组 的解是 则方程组 的解是 .

三、认真答一答:(本大题共9小题,共54分. )

19.(4分)计算: 20.(4分)分解因式: 2x4﹣2

21.(4分)解方程组 .

22.解不等式(组)(4分+4分)

(1)解不等式: ,并把解集表示在数轴上.

(2)求不等式组 的正整数解.

23.(5分)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.

(1)如果[a]=﹣2,那么a的取值范围是 .

(2)如果[ ]=3,求满足条件的所有正整数x.

24. (6分) 在△ABC中,AE⊥BC于点E,∠BAE:∠CAE=2:3,BD平分∠ABC,点F在BC上,∠CDF=30°,∠ABD=35°.

求证:DF⊥BC.

25.(6分)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解)

26.(8分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.

(1)求该校的大小寝室每间各住多少人?

(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?

27.(9分)如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.

(1)求证:∠1+∠2=90°;

(2)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合), 的值是否变化?如果变化,说明理由;如果不变,试求出其值.

初一上册数学期末试卷答案

一、选择题:(每题3分,共24分)

题号 1 2 3 4 5 6 7 8

答案 B D C B A C A B

二、填空题:(本大题共10小题,每小题2分,共22分)

9.__ _5×107__ 10.___24___11.___ 5.4 __ 12._ 4;8____13._ 假

14.750_ 15. 12 16.__950____17. x〉1.5 18. x=6.3,y=2.2

三、解答题(本大题共9小题,共54分.)

19.(本题满分4分) 解:

(1)

=x2+2x+1-(x2-4)-------------------------2分

= x2+2x+1-x2+4--------------------------3分

=2x+5 ---------------------------------4分

20.(本题满分4分)解:

(2) 原式=2(x4﹣1)

=2(x2+1)(x2﹣1)--------------------------------------------2分

=2(x2+1)(x+1)(x﹣1).------------------------------------4分

21.(本题满分4分)

解: ,由①得,x=2y+4③, -------------------------------------------1分

③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,-------------------------------------------2分

把y=﹣1代入③得,x=2×(﹣1)+4=2,------------------------------------------3分

所以,方程组的解是 .---------------------------------------------4分

22.(1)(本题满分4分)

解:去分母得:2(2x﹣1)﹣(9x+2)≤6,----------1分

去括号得:4x﹣2﹣9x﹣2≤6,移项得:4x﹣9x≤6+2+2,合并同类项得:﹣5x≤10,把x的系数化为1得:x≥﹣2.------------3分

----------------------------4分

(2)(本题满分4分)

解:解不等式2x+1>0,得:x>﹣ ,----------------------1

解不等式x>2x﹣5得:x<5,-------------------2分

∴不等式组的解集为﹣<x<5, p="" -------------------------3分

∵x是正整数,∴x=1、2、3、4、5.--------------------------------------------------4分

23.(本题满分5分)

(1)﹣2≤a<﹣1--------------------------------------------------------------2分

(2)根据题意得:

3≤[ ]<4,-------------------------------------------------3分

解得:5≤x<7,------------------------------------------4分

则满足条件的所有正整数为5,6.----------------------------------------5分

24.(本题满分6分)

证明:∵BD平分∠ABC,∠ABD=35°

∴∠ABC=2∠ABD=70°………………………………………………(2分)

∵AE⊥BC ∴∠AEB=90° ∴∠BAE=20°…………………………(3分)

又∵∠BAE:∠CAE=2:3 ∴∠CAE=30°………………………(4分)

又∵CDF=30° ∴∠CAE=∠CDF …………………………………(5分)

∴DF∥AE ∴DF⊥BC……………………………………………(6分)

25.(本题满分6分)

解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,-----1分

由题意,得

,-----------------------------------------------------------------3分

解得: ,-------------------------------------------------------------------4分

∴甲的速度为:2.5×150=375米/分.------------------------------------------------5分

答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.-----6分

26.(本题满分8分)

解:(1)设该校的大寝室每间住x人,小寝室每间住y人,------------------1分

由题意得:

,---------------------------------------3分

解得: ,----------------------------------4分

答:该校的大寝室每间住8人,小寝室每间住6人;

(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:

,------------------------------------------------------6分

解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.

故共有6种安排住宿的方案.-----------------------------------8分

27. (本题满分9分)

证明:(1)AD∥BC,∠ADC+∠BCD=180,----------------------------------------------1分

∵DE平分∠ADB,∴∠ADE=∠EDB,----------------------------------2分

∵∠ADC+∠BCD=180°,∠BDC=∠BCD,∴∠EDB+∠BDC=90°,--------------------------------------------3分

∠1+∠2=90°.---------------------------------------------------------4分

(2) ---------------5分

七年级上册数学知识点

第一章 有理数

1.1正数和负数

①把0以外的数分为正数和负数。0是正数与负数的分界。

②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

1.2有理数

1.2.1有理数

①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

1.2.2数轴

①具有原点,正方向,单位长度的直线叫数轴。

1.2.3相反数

①只有符号不同的数叫相反数。

②0的相反数是0 正数的相反数是负数 负数的相反数是正数

1.2.4绝对值

①绝对值 |a|

②性质:正数的绝对值是它的本身

负数的绝对值的它的相反数

0的绝对值的0

1.2.5数的大小比较

①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

1.3.2有理数的减法

①减去一个数,等于加这个数的相反数。a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

①两数相乘,同号得正,异号的负,并把绝对值相乘。

②任何数同0相乘,都得0。

③乘积是1的两个数互为倒数。

④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

1.4.2有理数的除法

①除以一个不等0的数,等于乘以这个数的倒数。

②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

1.5有理数的乘方

1.5.1乘方

①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

②负数的奇次幂是负数,负数的偶次幂的正数。

③正数的任何次幂都是正数,0的任何正整数次幂都是0。

④做有理数的混合运算时,应注意以下运算顺序:

1.先乘方,再乘除,最后加减;

2.同级运算,从左到右进行;

3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

1.5.2科学记数法。

①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

1.5.3近似数

①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

②近似数与准确数的接近程度,可以用精确度表示。

③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

第二章 整式的加减

2.1整式

①单项式:表示数或字母积的式子

②单项式的系数:单项式中的数字因数

③单项式的次数:一个单项式中,所有字母的指数和

④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

⑤多项式里次数最高项的次数,叫做这个多项式的次数。

⑥单项式与多项式统称整式。

2.2 整式的加减

①同类项:所含字母相同,而且相同字母的次数相同的单项式。

②把多项式中的同类项合并成一项,叫做合并同类项。

③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章 一元一次方程

3.1从算式到方程

3.1.1一元一次方程

①方程:含有未知数的等式

②一元一次方程:只含有一个未知数,而且未知数的'次数是1的方程。

③方程的解:使方程中等号左右两边相等的未知数的值

④求方程解的过程叫做解方程。

⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

3.1.2等式的性质

①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

3.2解一元一次方程(—)合并同类项与移项

①把等式一边的某项变号后移到另一边,叫做移项。

3.3解一元一次方程(二) 去括号与去分母

①一般步骤:1.去分母

2.去括号

3.移项

4.合并同类项

5.系数化为一

3.4实际问题与一元一次方程

利用方程不仅能求具体数值,而且可以进行推理判断。

第四章 图形认识初步

4.1多姿多彩的图形

4.1.1几何图形

①把实物中抽象出的各种图形统称为几何图形。

②几何图形的各部分不都在同一平面内,是立体图形。

③有些几何图形的各部分都在同一平面内,它们是平面图形。

④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。

⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

4.1.2点,线,面,体

①几何体也简称体。

②包围着体的是面。面有平的面和曲的面两种。

③面和面相交的地方形成线。(线有直线和曲线)

④线和线相交的地方是点。(点无大小之分)

⑤点动成线 ,线动成面,面动成体。

⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

⑧线段的比较:1.目测法 2.叠合法 3.度量法

4.2 直线,射线,线

①经过两点有一条直线,并且只有一条直线。

②两点确定一条直线。

③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

④射线和线段都是直线的一部分。

⑤把线段分成相等的两部分的点叫做中点。

⑥两点的所有连线中,线段最短。(两点之间,线段最短)

⑦连接两点间的线段的长度,叫做这两点的距离。

4.3 角

4.3.1角

①角也是一种基本的几何图形。

②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。

③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

⑤以度,分,秒为单位的角的度量制,叫做角度制。

4.3.2角的比较与运算

①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

4.3.3余角和补角

①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

③等角的补角相等。

④等角的余角相等。

七年级上册数学复习计划

跨入进入新的一年,我们的新课结束,本学期的期末考试将在1月18日进行,为了使同学们能够在期末考试中取得较好的成绩,特制定本期末复习计划。

一、复习目标

1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。

2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。

4、通过摸拟训练,培养学生考试的技能技巧。

本学期的知识内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本学期知识内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务。

另外,通过总复习,查缺补漏,使学习比较吃力的同学,能弥补当初没学会的知识,为今后的进一步学习打好基础。

二、复习重点

1、《第二章有理数的运算》:抓住有理数、数轴、相反数、绝对值、大小比较等这些重要的概念极其相关知识,以判断的形式为主进行复习,强化训练有理数的加减乘除乘方极其混合运算。

2、《第三章字母表示数》:重点是同类项及合并同类项,求代数式的值,难点是列代数式和去括号,让学生清楚的掌握同类项和合并同类项,经过填空,判断练习,提高学生的熟练程度。强化训练化简求值。

3、《第四章平面图形及其位置关系》:掌握与线段、角、平行线、垂线相关的基础知识和基本技能,知道三个定理和线段中点、角平分线等定义的三种语言的相互转化。熟练地结合图形进行线段及角的和差倍分的简单计算,会用量角器和三角板画角。

4、《第五章一元一次方程及应用题》:重点在于使学生能够根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法(去分母、去括号、移项、合并同类项、化系数为1),能运用一元一次方程解决实际问题。

三、复习方式

1、总体思想:分单元复习,同时综合测试三次。

2、单元复习方法:学生先做单元练习题,收集各学习小组反馈的情况进行重点讲解,布置适当的作业查漏补缺。

3、综合测试:严肃考风考纪,教师及时认真阅卷,讲评找出问题及时训练、辅导。

四、时间安排

第一阶段:单元复习

1月3日——1月8日,复习本学期各章知识内容。

第二阶段:综合测试

1、1月12日,综合测试1,讲评;

2、1月13日,综合测试2,讲评;

3、1月14日,综合测试3,讲评;其目的增强学生期末考试的信心。

4、1月15日,考前心理疏导,介绍解题的`方法,学生自己复习,老师答疑。

五、复习措施及注意事项

(一)分单元复习阶段的措施:

1、复习教材中的定义、概念、规则,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工,规范解题书写和作图能力的培养。

2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。让学生自主发现问题,解决问题。题目有层次,难度适中,照顾不同层次学生的学习。

3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。

(二)综合测试阶段的注意点

1、认真分析前两年的统考试卷,基本把握命题思想,掌握重难点,侧重点,基本点。

2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。

3、在每次测试后注重分析讲评,多用激励性语言,不要讽刺、挖苦学生,更不要打击学生的学习积极性。比如“这个题目不是讲过多遍了吗?你怎么还是错了,真是……”。相信每个学生经过自己的努力都能在期末考生中超常的发挥。

2288785