2024初一上册数学期末试卷及答案
数学是学习和研究现代科学技术必不可少的基本工具。那么关于初一上册数学期末试卷怎么做呢?以下是小编整理的一些初一上册数学期末试卷,仅供参考。
初一上册数学期末试卷
一、精心选一选:(本大题共8小题,每题3分,共24分)
1.下列运算正确的是 ( )
A、2x+3y=5xy B、5m2m3=5m5 C、(a—b)2=a2—b2 D、m2m3=m6
2.已知实数 、 ,若 > ,则下列结论正确的是 ( )
A. B. C. D.
3.等腰三角形的一条边长为6,另一边长为13,则它的周长为 ( )
A. 25 B. 25或32 C. 32 D. 19
4.命题:
①对顶角相等;
②同一平面内垂直于同一条直线的两直线平行;
③相等的角是
对顶角;
④同位角相等。其中假命题有 ( )
A.1个 B.2个 C.3个 D.4个
5. 如果关于x、y的方程组x-y=a,3x+2y=4的解是正数,那么a的取值范围是 ( )
A.-2<a-43 C.a<2 D.a<-43
6. 下图能说明∠1>∠2的是 ( )
7.某校去年有学生1 000名,今年比去年增加4.4%,其中住宿学生增加6%,走读生减少2%。若设该校去年有住宿学生有x名,走读学生有y名,则根据题意可得方程组 ( )
A. B.
C. D.
8.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需 ( )根火柴.
A. 156 B. 157 C. 158 D. 159
二、细心填一填:(本大题共10小题,每空2分,共22分)
9.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为 吨。
10. 若方程组 ,则3(x+y)﹣(3x﹣5y)的值是 .
11. 已知10m=3,10n=5,则103m-n= .
12.计算 的结果不含 和 的项,那么m= ;n= .
13.命题“两直线平行,同旁内角相等”是 命题(填“真”或“假”).
14.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是 .
15.端午佳节,某商场进行促销活动,将定价为3元的水笔,以下列方式优惠销售:若购买不超过10支,按原价付款;若一次性购买10支以上打八折.如果用30元钱,最多可以购买该水笔的`支数是_______.
16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC, 则∠B = °.
17.若不等式组 的解集为3≤x≤4,则不等式ax+b<0的解集为 .
18.若方程组 的解是 则方程组 的解是 .
三、认真答一答:(本大题共9小题,共54分. )
19.(4分)计算: 20.(4分)分解因式: 2x4﹣2
21.(4分)解方程组 .
22.解不等式(组)(4分+4分)
(1)解不等式: ,并把解集表示在数轴上.
(2)求不等式组 的正整数解.
23.(5分)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.
(1)如果[a]=﹣2,那么a的取值范围是 .
(2)如果[ ]=3,求满足条件的所有正整数x.
24. (6分) 在△ABC中,AE⊥BC于点E,∠BAE:∠CAE=2:3,BD平分∠ABC,点F在BC上,∠CDF=30°,∠ABD=35°.
求证:DF⊥BC.
25.(6分)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解)
26.(8分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.
(1)求该校的大小寝室每间各住多少人?
(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?
27.(9分)如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.
(1)求证:∠1+∠2=90°;
(2)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合), 的值是否变化?如果变化,说明理由;如果不变,试求出其值.
初一上册数学期末试卷答案
一、选择题:(每题3分,共24分)
题号 1 2 3 4 5 6 7 8
答案 B D C B A C A B
二、填空题:(本大题共10小题,每小题2分,共22分)
9.__ _5×107__ 10.___24___11.___ 5.4 __ 12._ 4;8____13._ 假
14.750_ 15. 12 16.__950____17. x〉1.5 18. x=6.3,y=2.2
三、解答题(本大题共9小题,共54分.)
19.(本题满分4分) 解:
(1)
=x2+2x+1-(x2-4)-------------------------2分
= x2+2x+1-x2+4--------------------------3分
=2x+5 ---------------------------------4分
20.(本题满分4分)解:
(2) 原式=2(x4﹣1)
=2(x2+1)(x2﹣1)--------------------------------------------2分
=2(x2+1)(x+1)(x﹣1).------------------------------------4分
21.(本题满分4分)
解: ,由①得,x=2y+4③, -------------------------------------------1分
③代入②得2(2y+4)+y﹣3=0,解得y=﹣1,-------------------------------------------2分
把y=﹣1代入③得,x=2×(﹣1)+4=2,------------------------------------------3分
所以,方程组的解是 .---------------------------------------------4分
22.(1)(本题满分4分)
解:去分母得:2(2x﹣1)﹣(9x+2)≤6,----------1分
去括号得:4x﹣2﹣9x﹣2≤6,移项得:4x﹣9x≤6+2+2,合并同类项得:﹣5x≤10,把x的系数化为1得:x≥﹣2.------------3分
----------------------------4分
(2)(本题满分4分)
解:解不等式2x+1>0,得:x>﹣ ,----------------------1
解不等式x>2x﹣5得:x<5,-------------------2分
∴不等式组的解集为﹣<x<5, p="" -------------------------3分
∵x是正整数,∴x=1、2、3、4、5.--------------------------------------------------4分
23.(本题满分5分)
(1)﹣2≤a<﹣1--------------------------------------------------------------2分
(2)根据题意得:
3≤[ ]<4,-------------------------------------------------3分
解得:5≤x<7,------------------------------------------4分
则满足条件的所有正整数为5,6.----------------------------------------5分
24.(本题满分6分)
证明:∵BD平分∠ABC,∠ABD=35°
∴∠ABC=2∠ABD=70°………………………………………………(2分)
∵AE⊥BC ∴∠AEB=90° ∴∠BAE=20°…………………………(3分)
又∵∠BAE:∠CAE=2:3 ∴∠CAE=30°………………………(4分)
又∵CDF=30° ∴∠CAE=∠CDF …………………………………(5分)
∴DF∥AE ∴DF⊥BC……………………………………………(6分)
25.(本题满分6分)
解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,-----1分
由题意,得
,-----------------------------------------------------------------3分
解得: ,-------------------------------------------------------------------4分
∴甲的速度为:2.5×150=375米/分.------------------------------------------------5分
答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.-----6分
26.(本题满分8分)
解:(1)设该校的大寝室每间住x人,小寝室每间住y人,------------------1分
由题意得:
,---------------------------------------3分
解得: ,----------------------------------4分
答:该校的大寝室每间住8人,小寝室每间住6人;
(2)设大寝室a间,则小寝室(80﹣a)间,由题意得:
,------------------------------------------------------6分
解得:80≥a≥75,①a=75时,80﹣75=5,②a=76时,80﹣a=4,③a=77时,80﹣a=3,④a=78时,80﹣a=2,⑤a=79时,80﹣a=1,⑥a=80时,80﹣a=0.
故共有6种安排住宿的方案.-----------------------------------8分
27. (本题满分9分)
证明:(1)AD∥BC,∠ADC+∠BCD=180,----------------------------------------------1分
∵DE平分∠ADB,∴∠ADE=∠EDB,----------------------------------2分
∵∠ADC+∠BCD=180°,∠BDC=∠BCD,∴∠EDB+∠BDC=90°,--------------------------------------------3分
∠1+∠2=90°.---------------------------------------------------------4分
(2) ---------------5分
七年级上册数学知识点
第一章 有理数
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章 整式的加减
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章 一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式
②一元一次方程:只含有一个未知数,而且未知数的'次数是1的方程。
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二) 去括号与去分母
①一般步骤:1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程
利用方程不仅能求具体数值,而且可以进行推理判断。
第四章 图形认识初步
4.1多姿多彩的图形
4.1.1几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线 ,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法
4.2 直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角
4.3.1角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。
七年级上册数学复习计划
跨入进入新的一年,我们的新课结束,本学期的期末考试将在1月18日进行,为了使同学们能够在期末考试中取得较好的成绩,特制定本期末复习计划。
一、复习目标
1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。
2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。
3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。
4、通过摸拟训练,培养学生考试的技能技巧。
本学期的知识内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本学期知识内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务。
另外,通过总复习,查缺补漏,使学习比较吃力的同学,能弥补当初没学会的知识,为今后的进一步学习打好基础。
二、复习重点
1、《第二章有理数的运算》:抓住有理数、数轴、相反数、绝对值、大小比较等这些重要的概念极其相关知识,以判断的形式为主进行复习,强化训练有理数的加减乘除乘方极其混合运算。
2、《第三章字母表示数》:重点是同类项及合并同类项,求代数式的值,难点是列代数式和去括号,让学生清楚的掌握同类项和合并同类项,经过填空,判断练习,提高学生的熟练程度。强化训练化简求值。
3、《第四章平面图形及其位置关系》:掌握与线段、角、平行线、垂线相关的基础知识和基本技能,知道三个定理和线段中点、角平分线等定义的三种语言的相互转化。熟练地结合图形进行线段及角的和差倍分的简单计算,会用量角器和三角板画角。
4、《第五章一元一次方程及应用题》:重点在于使学生能够根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法(去分母、去括号、移项、合并同类项、化系数为1),能运用一元一次方程解决实际问题。
三、复习方式
1、总体思想:分单元复习,同时综合测试三次。
2、单元复习方法:学生先做单元练习题,收集各学习小组反馈的情况进行重点讲解,布置适当的作业查漏补缺。
3、综合测试:严肃考风考纪,教师及时认真阅卷,讲评找出问题及时训练、辅导。
四、时间安排
第一阶段:单元复习
1月3日——1月8日,复习本学期各章知识内容。
第二阶段:综合测试
1、1月12日,综合测试1,讲评;
2、1月13日,综合测试2,讲评;
3、1月14日,综合测试3,讲评;其目的增强学生期末考试的信心。
4、1月15日,考前心理疏导,介绍解题的`方法,学生自己复习,老师答疑。
五、复习措施及注意事项
(一)分单元复习阶段的措施:
1、复习教材中的定义、概念、规则,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工,规范解题书写和作图能力的培养。
2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。让学生自主发现问题,解决问题。题目有层次,难度适中,照顾不同层次学生的学习。
3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。
(二)综合测试阶段的注意点
1、认真分析前两年的统考试卷,基本把握命题思想,掌握重难点,侧重点,基本点。
2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。
3、在每次测试后注重分析讲评,多用激励性语言,不要讽刺、挖苦学生,更不要打击学生的学习积极性。比如“这个题目不是讲过多遍了吗?你怎么还是错了,真是……”。相信每个学生经过自己的努力都能在期末考生中超常的发挥。