学习啦 > 学习方法 > 考试试卷 >

2024八年级上册数学第一单元试题

时间: 梦荧0 分享

经过一段时间的学习,同学们肯定很想知道,自己有没有把知识点读懂,那么八年级上册数学第一单元试题怎么做呢?以下是小编整理的一些八年级上册数学第一单元试题,仅供参考。

2024八年级上册数学第一单元试题

八年级上册数学第一单元试题

一、选择题(每小题3分,共30分)

1.下列说法中正确的是( )

A.已知 是三角形的三边,则

B.在直角三角形中,两边的平方和等于第三边的平方

C.在Rt△ABC中,∠C=90°,所以

D.在Rt△ABC中,∠B=90°,所以

2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来

的( )

A.1倍 B.2倍 C.3倍 D.4倍

3.在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.等腰直角三角形

4.如图,已知正方形B的面积为144,如果正方形C的面积为169,那么正方形A的面积 为( )

A.313 B.144 C.169 D.25

5.如图,在Rt△ABC中,∠ACB=90°,若AC=5 cm,BC=12 cm,则Rt△ABC斜边上的高CD的长为( )

A.6 cm B.8.5 cm C. cm D. cm

6.分别满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1︰2︰3 B.三边长的平方之比为1︰2︰3

C.三边长之比为3︰4︰5 D.三内角之比为3︰4︰5

7.如图,在△ABC中,∠ACB=90°,AC=40,BC=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( )

A.6 B.7 C.8 D.9

8.如图,一圆柱高8 cm,底面半径为 cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是( )

A.6 cm B.8 cm C.10 cm D.12 cm

9.如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,那么这个三角形一定是( )

A.锐角三角形 B.直角三角形

C.钝角三角形 D.等腰三角形

10.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,已知a∶b=3∶4,c=10,则△ABC的面积为( )

A.24 B.12 C.28 D.30

二、填空题(每小题3分,共24分)

11.现有两根木棒的长度分别是40 cm和50 cm,若要钉成一个三角形木架,其中有一个角

为直角,则所需木棒的最短长度为________.

12.在△ABC中,AB=AC=17 cm,BC=16 cm,AD⊥BC于点D,则AD=_______.

13.在△ABC中,若三边长分别为9,12,15,则用两个这样的三角形拼成的长方形的面积

为________.

14.如图,某会展中心在会展期间准备将高5 m,长13 m,宽2 m的楼道上铺地毯,已知地

毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要________元钱.

第15题图

15.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于    .

16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为 。

17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm,则正方形A,B,C,D的面积之和为___________cm2.

18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一

条“路”,他们仅仅少走了________步路(假设2步为1m),却踩伤了花草.

三、解答题(共46分)

19.(6分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.

某学习小组组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.

20.(6分)如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5 km,BC=4 km,

若每天凿隧道0.2 km,问几天才能把隧道AC凿通?

21.(6分)若三角形的三个内角的比是1︰2︰3,最短边长为1,最长边长为2.

求:(1)这个三角形各内角的度数;

(2)另外一条边长的平方.

22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?

23.(7分)张老师在一次“探究性学习”课中,设计了如下数表:

n 2 3 4 5 …

a 22-1 32-1 42-1 52-1 …

b 4 6 8 10 …

c 22+1 32+1 42+1 52+1 …

(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:

a=__________,b=__________,c=__________.

(2)以a,b,c为边长的三角形是不是直角三角形?为什么?

24.(7分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10 cm,AB=8 cm.

求:(1)FC的长;(2)EF的长.

25.(7分)如图,在长方体 中, ,AD=3,一只蚂蚁从A点出发,沿长方体表面爬到 点,求蚂蚁怎样走路程最短,最短路程是多少?

八年级上册数学第一单元试题答案

1.C 解析:A.不确定三角形是不是直角三角形,故A选项错误;B.不确定第三边是不是斜边,故B选项错误;C.∠C=90°,所以其对边为斜边,故C选项正确;D.∠B=90°时,有b2=a2+c2,所以a2+b2=c2不成立,故D选项错误.

2.B 解析:设原直角三角形的两直角边长分别是a,b,斜边长是c,则a2+b2=c2,则扩大后的直角三角形两直角边长的平方和为 斜边长的平方为 ,即斜边长扩大到原来的2倍,故选B.

3.B 解析:在△ABC中,由AB=6,AC=8,BC=10,可推出AB2+AC2=BC2.由勾股定理的逆定理知此三角形是直角三角形,故选B.

4.D 解析:设三个正方形A,B,C的边长依次为a,b,c,因为三个正方形的边组成一个直角三角形,所以a2+b2=c2,故SA+SB=SC,即SA=169-144=25.

5.C 解析:由勾股定理可知 ,所以AB=13 cm,再由三角形的面积公式,有 ,得 .

6.D 解析:在A选项中,求出三角形的三个内角分别是30°,60°,90°;在B,C选项中,都符合勾股定理的条件,所以A,B,C选项中的三角形都是直角三角形.在D选项中,求出三角形的三个内角分别是45°,60°,75°,所以不是直角三角形,故选D.

7.C 解析:在Rt△ABC中,AC=40,BC=9,由勾股定理得AB=41.因为BN=BC=9, ,所以 .

8.C 解析:如图为圆柱的侧面展开图,

∵ 为 的中点,则 就是蚂蚁爬行的最短路径.

∵ (cm),

∴ (cm).

∵ cm,∴ =100(cm),

∴ AB= 10 cm,即蚂蚁要爬行的最短路程是10 cm.

9.B 解析:由 ,

整理,得 ,

即 ,所以 ,

符合 ,所以这个三角形一定是直角三角形.

10.A 解析:因为a∶b=3∶4,所以设a=3k,b=4k(k>0).

在Rt△ABC中,∠C=90°,由勾股定理,得a2+b2=c2.

因为c=10,所以9k2+16k2=100,解得k=2,所以a=6,b=8,

所以S△ABC=12ab=12×6×8=24.故选A.

11.30 cm 解析:当50 cm长的`木棒构成直角三角形的斜边时,设最短的木棒长为x cm(x>0),由勾股定理,得 ,解得x=30.

12.15 cm 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线互相重合,

∵ BC=16,∴

∵ AD⊥BC,∴ ∠ADB=90°.

在Rt△ADB中,∵ AB=AC=17,由勾股定理,得 .∴ AD=15 cm.

13.108 解析:因为 ,所以△ 是直角三角形,且两条直角边长分别为9,12,则用两个这样的三角形拼成的长方形的面积为 .

14.612 解析:由勾股定理,得楼梯的底面至楼梯的最高层的水平距离为12m,所以楼道上铺地毯的长度为5+12=17(m).因为楼梯宽为2 m,地毯每平方米18元,所以铺完这个楼道需要的钱数为18×17×2=612(元).

15.6  解析:∵ △ABH≌△BCG≌△CDF≌△DAE,∴ AH=DE.

又∵ 四边形ABCD和EFGH都是正方形,

∴ AD=AB=10,HE=EF=2,且AE⊥DE.

∴ 在Rt△ADE中, ,∴ + =

∴ + = ,∴ AH=6或AH= - 8(不合题意,舍去).

16.126或66  解析:本题分两种情况.

(1)如图(1),在锐角△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(1)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5.在Rt△ACD中,AC=20,AD=12,

由勾股定理,得 =256,

∴ CD=16,∴ BC的长为BD+DC=5+16=21,

△ABC的面积= BCAD= ×21×12=126. (2)如图(2),在钝角△ABC中,AB=13,AC=20,BC边上的高AD=12,

第16题答图(2)

在Rt△ABD中,AB=13,AD=12,由勾股定理,得 =25,∴ BD=5. 在Rt△ACD中,AC=20,AD=12,由勾股定理,得 =256,∴ CD=16.∴ BC=DC-BD=16-5=11.

△ABC的面积= BCAD= ×11×12=66.

综上,△ABC的面积是126或66. 17.49 解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49 .

18.4 解析:在Rt△ABC中,∠C=90°,由勾股定理,得 ,所以AB=5.他们仅仅少走了 (步).

19.解:如图,在△ABC中,AB=15,BC=14,AC=13,

设 ,∴ .

由勾股定理,得 ,

∴ ,

解得 .

∴ .

∴ .

20.解:在Rt△ 中,由勾股定理,得 ,

即 ,解得AC=3,或AC=-3(舍去).

因为每天凿隧道0.2 km,

所以凿隧道用的时间为3÷0.2=15(天).

答:15天才能把隧道AC凿通.

21.解:(1)因为三个内角的比是1︰2︰3,

所以设三个内角的度数分别为k,2k,3k(k≠0).

由k+2k+3k=180°,得k=30°,

所以三个内角的度数分别为30°,60°,90°.

(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.

设另外一条直角边长为x,则 ,即 .

所以另外一条边长的平方为3.

22.分析:旗杆折断的部分、未折断的部分和折断后原旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.

解:设旗杆未折断部分的长为x m,则折断部分的长为(16-x)m,

根据勾股定理,得 ,

解得 ,即旗杆在离底部6 m处断裂.

23.分析:从表中的数据找到规律.

解:(1)n2-1 2n n2+1

(2)以a,b,c为边长的三角形是直角三角形.

理由如下:

∵ a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,

∴ 以a,b,c为边长的三角形是直角三角形.

24.分析:(1)因为将△ 翻折得到△ ,所以 ,则在Rt△ 中,可求得 的长,从而 的长可求;

(2)由于 ,可设 的长为 ,在Rt△ 中,利用勾股定理解直角三角形即可.

解:(1)由题意,得AF=AD=BC=10 cm,

在Rt△ABF中,∠B=90°,

∵ cm,∴ ,BF=6 cm,

∴ (cm). (2)由题意,得 ,设 的长为 ,则 .

在Rt△ 中,∠C=90°,

由勾股定理,得 即 ,

解得 ,即 的长为5 cm.

25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.

解:蚂蚁沿如图(1)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,得 . 蚂蚁沿如图(2)所示的路线爬行时,长方形 长为 ,宽为 ,

连接 ,则构成直角三角形.

由勾股定理,

得 , .

蚂蚁沿如图(3)所示的路线爬行时,长方形 长为 宽为AB=2,连接 ,则构成直角三角形.

由勾股定理,得

∴ 蚂蚁从 点出发穿过 到达 点时路程最短,最短路程是5.

初二数学学习方法

1.温故法

概念教学的起步是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对自己认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促进新概念的形成。

2.类比法

抓住新旧知识的本质联系,有目的、有计划地让自己将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引进概念。

3.喻理法

为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。

如,学“用字母表示数”时,先出示的两句话:“阿Q和小D在看《W的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃

A”,要求自己回答这里的A则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的X各表示什么?根据自己的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。

这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。

4.置疑法

通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和合理性,调动了解新概念的强烈动机和愿望。

5.演示法

有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和掌握。

如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概念。引进这个概念,可出示

2只一行的白蝴蝶图,再2只、2只地出示3个2只的第二行花蝴蝶图,结合演示,通过循序答问,使自己清晰地认识到:花蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于1份,花蝴蝶就有3份。用数学上的话说:花蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这样,从演示图形中让自己看到从“个数”到“份数”,再引出倍数,很快地触及了概念的本质。

6.问答法

引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。

八年级上册数学复习计划

一、抓住课堂

理科学习重在平日功夫,不适于突击复习。学习最重要的是课堂上课,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

二、高质量完成作业

所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自己的'机会。成功会带来自信,而自信对于学习理科十分重要;即使失败,这道题也会给你留下深刻的印象。

三、勤思考,多提问

首先对于老师给出的规律、定理,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的途径。其次,学习任何学科都应抱着怀疑的态度,尤其是理科。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的途径。

四、总结比较,理清思绪

(1)知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。

五、有选择地做课外练习

课余时间对我们中学生来说是十分珍贵的,所以在做课外练习时要少而精,只要每天做两三道题,天长日久,你的思路就会开阔许多。

学习数学方法虽然重要,但刻苦钻研,精益求精的精神更为重要。只要你坚持不懈地努力,就一定可以学好数学。相信自己,数学会使你智慧的光芒更加耀眼夺目!

复习学习法周循环学习法

(一)周循环学习法:是把一周学习量提前做计划,并循环反复的学习方法。制定周一到周六的学习计划,每天完成,万一没有完成的部分在周日补充学习,以便于系统管理学习进度。

(二)为什么周循环学习方法很重要?有了目标就能更有针对性,计划落实也会更好。高考就像马拉松,以一定的步伐有节奏地坚持跑下去才能取得好成绩。根据精华教育考试研究中心的研究结果,周单位的学习计划比每日计划或每月计划更有效果。所以制定每周计划,不断循环的过程很重要。

(三)周循环学习法如何实践?

1、第一步:周日晚上制定周学习计划。

根据自己总的学习进度,制定一周的目标。根据目标计算周一到周六的学习量,制定可行的、但又必须完成的学习计划。

2、第二步:周一至周六按计划学习。

根据计划学习量做好每日时间管理,每日结束前确认一下计划完成度,记录学习日志;

3、第三步:周日彻底完成学习计划。

把本周的学习完成情况总结一下。没有完成的部分在周日彻底解决。一周计划都完成了,就好好放松一下,然后做下周计划。

(四)注意事项

1、不要做过度的计划,以免产生挫折感,渐渐失去学习兴趣;

2、要空着周日。因特殊情况而没有完成的计划周日弥补,并休息。

3、当日未完成的计划不要拖到第二日,要果敢地跳过去。待周日再完成。拖到第二日反而会产生连锁反应而更疲惫。

2271313