学习啦 > 学习方法 > 考试试卷 >

2024六年级上册数学月考试卷及答案

时间: 梦荧0 分享

试卷是命题者按照一定的考核目的编写出来的。那么关于六年级上册数学月考试卷怎么做呢?以下是小编整理的一些六年级上册数学月考试卷,仅供参考。

2024六年级上册数学月考试卷及答案

六年级上册数学月考试卷

一、填一填,我能行!(10%)

1、 米长的绳子平均分成3段,每段是这条绳子的 ,每段长 米。

2、( )÷16= =15:( )=( ):24=( )(用小数表示)

3、5吨增加 吨是( )吨。

4、白兔只数的 相当于黑兔的只数,这句话是把( )看作单位“1”;黑兔的只数比白兔的只数少 。

5、工程队6天安装水管240米,安装的米数与天数的最简比是( ):( ),比值是( ),比值的意义是( )。

6、学校把72本科普读物,按4:5分配给AB两个班,A班分得( )本,B班分得( )本。

7、一项工程10天完成,平均每天完成这项工程 ,完成这项工程的 需要( )天。

8、把一条绳子对折再对折后量一下是 米,这条绳子长( )米。

9、从甲桶油里取出 倒入乙桶里,则甲乙两桶油重量相等,原来乙桶里的油的重量相当于甲桶的 。

10、在一个直径10厘米的圆中,截取掉一个最大的正方形后,剩下的面积是( )。

二、精挑细选,我最棒!(6%)

1、( )的倒数比它本身大。

A、带分数 B、真分数 C、假分数

2、把10克的盐放入100克的水中,盐占盐水的( )

A、 B、 C、

3、在8:15中,如果前项加上4,要使比值不变,后项应( )

A、加上4 B、乘以2 C、加上15 D、乘以

4、小圆的周长是大圆周长的.1/3,小圆面积与大圆面积的比是( )

A、1:3 B、3:1 C、1:9 D、9:1

三、我是计算小能手!(36%)

1、直接写出得数:(8%)

2、(1)化简化。(4%) (2)求比值。(4%)

①2.5:0.45 ②24: ① ②

3、解方程:(6%)

4、用你喜欢的方法算:(8%)

5、列式计算(6%)

① 与 的和与一个数的 相等地,求这个数。

②20比一个数的 多2,这个数是多少?

③ 与 的和的倒数与 的积是倒数是多少?

四、按要求计算。(15%)

1、求阴影部分的周长和面积。

2、阴影面积是5cm2,求圆环面积。

五、走进生活,解决问题。(33%)

1、一块长方形地,宽120米,长比宽多 。这块地的面积是多少平方米?

2、计划加工一批童装,第一周完成了计划的 ,第二周加工了400套,结果超过计划的 ,服装厂计划加工多少套童装?

3、甲乙两地相距360千米,客车和货车同时从两地相对开出,经过5小时相遇。已知货车与客车的速度比是4:5,求客车与货车的速度。

4、给缸口直径是1.95m的水缸做一个木盖,木盖直径比缸口直径长5cm,木盖面积是多少平方米?如果在木盖的外沿钉一圈铁片,铁片长是多少米?

5、有一堆苹果100个,吃掉19个后,小明和小红把剩下的苹果分掉,小红比小明少1/5,他们各分得多少个苹果?

6、探索:

小王、小李、小林合租一套房子,360元一个月,小王8天后离开,小李12天后离开,小林30天后离开,如果你是他们中的一员,你该如何出钱?

六年级上册数学月考试卷答案

一、填一填,我能行!

1、 , 2、6,24,9,0.375 3、 4、白兔只数,

5、40,1,40,每天修的米数 6、32,40 7、 ,6 8、3 9、 10、28.5cm2

二、精挑细选,我最棒:

1——6 BBDCCC

三、我是计算小能手!

1、直接写出得数:1 6

2、(1)小简化:①50:9 ②81:1 (2)求比值:① ②3

3、解方程:

5、列式计算:① ② ③

四、

1、周长:3.14×8+10×2=45.12(cm)面积:3.14×42+10×8=130.24(cm2)

周长:3.14×8=25.12(cm) 面积:8×8-3.14×42=13.76(cm2)

2、3.14×5×2=31.4(cm2)

五、1、 (米) 2、

160×120=48200(米2)

3、 (千米) (份)

(千米) (千米)

4、5 cm=0.05 m 1.95+0.05=2 m 2÷2=1(m)

3.14×12=3.14(m2) 3.14×2=6.28(米)

5、100-19=81(个) 81-45=36(个) 设小明X个?

(个)

6、第一种:8:12:30=4:6:15

4+6+15=25(份)

小王: (元)

小李: (元)

小林: (元)

第二种:360÷30=12(元)

12×8=96(元)

96÷3=32(元)

12×(12-8)=48(元)

48÷2=24(元)

12×(30-12)=216(元)

小王:32元

小李:32+24=56(元)

小林:32+24+216=272(元)

六年级数学学习方法

1、利用生活中的数学体现,激发孩子内在的学习动机

数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。

2、抓住数学敏感期,循序渐进,发展数学思维

研究证明,儿童在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。

而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。

3、讨论合作,共同发散数学思维

每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。

孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。

六年级上册数学的知识点

第一章:方程以及列方程解应用题

1、形如ax±b=c方程的解法

【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】例:3x+15=30要在两边同时减去15;而4x-6=14要在两边同时加上6,最后算出结果。

2、形如ax±bx=c方程的解法

【解方程时,第一步要把x前面的序数相加或相减,再在两边同时除以同一个数】例:3x+4x=28要把x前面的3和4相加得到x的系数即7x=28,解得x=4列方程解决实际问题

3、基本步骤:审清题意→写解、设出未知数→找准等量关系→列方程→解方程→检验→作答

4、基本类型:比较大小关系;

总数和部分数关系(总数=各部分数的和);

和倍与差倍关系(已知一个数与另一个数的和或差的几倍是多少,求这个数?);行程问题中的关系;路程=速度×时间;总路程=甲行走的路程+乙行走的路程涉及图形的周长、面积的关系等:

周长:正方形的周长=边长×4

长方形的周长=(长+宽)×2面积:正方形的面积=边长×边长

长方形的面积=长×宽

三角形的面积=(底×高)÷2

梯形的面积=(上底+下底)×高÷2

体积:长方体的体积=长×宽×高=底面积×高

正方体的体积=棱长×棱长×棱长=底面积×高

第二单元长方体和正方体

1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。

2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

3、长方体的特征:面有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱有12条棱,相对的棱长度相等;顶点有8个顶点。

4、正方体的特征:面有六个面,都是正方形,所有的面完全相同;棱有12条棱,所有的棱长度相等;顶点有8个顶点。

5、正方体也是一种特殊的长方体。

6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。

7、长方体(或正方体)的六个面的总面积,叫做它的表面积。

8、长方体的表面积=(长×宽+宽×高+高×长)×2

正方体的表面积=棱长×棱长×6。

注:在解决实际问题中没有的部分应减掉。如:没有盖或底边为:

面积=表面积-没有的部分=(长×宽+宽×高+长×高)×2-长×宽没有左侧或右侧为:

面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-宽×高没有前面或后面为:

面积=表面积-没有的部分=((长×宽+宽×高+长×高)×2-长×高

9、物体所占空间的大小叫做物体的体积。

10、容器所能容纳物体的体积,叫做这个容器的容积。

11、常用的体积单位有立方厘米、立方分米、立方米。

1立方米=1000立方分米,1立方分米=1000立方厘米。

12、计量液体的体积,常用升和毫升作单位。

1立方分米=1升,1立方厘米=1毫升,1升=1000毫升。

13、长方体的体积=长×宽×高V=abh

14、正方体的体积=棱长×棱长×棱长V=a×a×a=a

15、长方体(或正方体)的体积=底面积×高=横截面×长V=Sh

16、1=12=83=274=645=1256=216

7=3438=5129=72910=1000

17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进都是100,每相邻两个体积单位之间的进率都是1000。

18、正方体的棱长扩大n倍,表面积会扩大n的平方倍,体积会扩大n的立方倍。

第三单元分数乘法

1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。

2、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

3、一个数乘分数表示求这个数的几分之几是多少;

4、求一个数的几分之几是多少用乘法计算。即:这个数×分数

5、乘积是1的两个数互为倒数;1的倒数是1,0没有倒数,分子为1的分数的倒数就是这个分数的分母。

6、一个数乘真分数(比1小的数)积比原来的数小;一个数乘以1等于它本身;一个数乘比1大的假分数(比1大的数)积比原来的数大。

7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。8、在计算分数乘法中,第二步约分时只能用分子与分母约,而不能用分子与分子约,分母与分母约;分数连乘计算时第一个分数可以和第二个进行约分,也可以和第三个进行约分,但是是分子与分母约,而不能用分子与分子约,分母与分母约。

第四单元分数除法

1、比较量=单位“1”的量×分率;

2、单位“1”的量=比较量÷对应分率;分率=比较量÷单位“1”的量

3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。(可以用整数的除法来证明。如:4÷2=4×1/2=2)

4、混合运算中,除号在哪个分数前面,变为乘号后就乘以哪个分数的倒数。(5/6×4/7÷5/7=5/6×4/7×7/5=2/3)

5、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。交换被除数与除数的位置,所得的商和原来的商互为倒数。

6、运用分数乘除法解决相应的实际问题:

(1)已知一个数及这个数的几分之几,求这个数的几分之几是多少?

这个数×分数

(2)已知一个数和它占另一个数的几分之几,求另一个数是多少?方法一:方法二:一个数÷分数解:设另一个数为__×分数=一个数

第五单元认识比

1、两个数相除又叫做这两个数的比,“:”是比号。

2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。

3、比的前项除以后项所得的商叫做比值

4、比的前项相当于除法算式的被除数,相当于分数的分子;比号相当于除号,相当于分数线;比的后项相当于除法算式的除数,相当于分数的分母;比值相当于除法算式的商,相当于分数的值。

5、两个数的比可以用比号连接也可以写成分数形式。

6、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。

7、化简比时,运用比的基本性质把比的前项和后项同时乘或除以相同的数(0除外),所得的最简比的前项和后项不能有公因数,也不能是分数或小数。

(1)整数比化简:比的前项和后项同时除以比前项和后项的最大公因数,所得的比为最简整数比。

(2)小数比化简:先看比前项和后项最多的项有几位小数,一位小数扩大10倍,两位小数扩大100倍;再按整数比化简的方法化简。

(3)分数比化简:比前项和后项的分数的同时乘以比前项和后项的分数的分母的最小公倍数;再按整数比化简的方法化简。

8、运用比的知识解决实际问题:

按比例分配:分配总分数等于比例前项和后项的和(如按3:2分,即总共分5份,前项占3份,后项占2份;也可以说前项占总数的3/5,后项占总数的2/5。)则可以用总数乘以前项所占的分数,求出前项对应的值;用总数乘以后项所占的分数,求出后项对应的值。

求大树高度:同一地点,同一时间物体高度与影长的比例相同。竹竿长:竹竿影长=大树高:大树影长或竹竿长/竹竿影长=大树高/大树影长

第六单元分数四则运算

分数四则运算和整数一样:先算乘除,后算加减,有括号的先算括号里的。

一、定律

(1)加法交换律:交换两个加数的位置,和不变:a+b=b+a

(2)加法结合律:三个数相加,先用前两个数相加,再加上第三个数,或者先用后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

(3)乘法交换律:交换两个乘数的位置,积不变。a×b=b×a

(4)乘法结合律:三个数相乘,先用前两个数相乘,再乘以第三个数,或者先用后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

(5)乘法分配律:ac+bc=(a+b)cac-bc=(a-b)c

二、简便运算:

(一)加法

三个数相加,先找出加数中分母相同的加数;运用加法交换律或结合律把这两个加数移到一起,在这个算式中先算这两个数的和,再用这两个的和加上另一个数。

(二)减法

减法的性质:一个数连续减去几个数,等于减去这几个数的和。

即:a-b-c=a-(b+c)或a-b+c=a-(b-c);a-(b+c)=a-b-c或a-(b-c)=a-b+c

1、在分数四则混合运算中,如果只有加减法,并且在括号里面和外面有分母相同的分数,则利用减法的性质进行去括号计算。即:a-(b+c)=a-b-ca-(b-c)=a-b+c

2、在分数四则混合运算中,如果只有加减法,被减数外的两个分数是分母相同的分数,则利用减法的性质进行加括号计算即:a-b-c=a-(b+c)或a-b+c=a-(b-c)(四)乘、除法

1、在四则混合运算中,先观察题中是否有相同的分数。如果有且相同的分数分布在加减号的两侧,则可以根据乘法分配律来简便计算。即:ac+bc=(a+b)cac-bc=(a-b)c

2、分数除法:除以一个数等于乘以这个数的倒数。

3、除法的性质:一个数连续除以几个数,等于除以这几个数的积。

即:a÷b÷c=a÷(b×c)或a÷b×c=a÷(b÷c);a÷(b×c)=a÷b÷c或a÷(b÷c)=a÷b×c五、解决实际问题

已知A和B是A的几分之几,求B?A×几分之几=B

已知A和B比A多几分之几,求B?A+A×几分之几=B

已知A和B比A少几分之几,求B?

A×几分之几=B

探索与实践结论:把一个长方形的长和宽分别增加1/2,即长和宽变为原来的3/2,现在的面积变为原来的9/4,即为:现在面积:原来面积的=现在长:原来长=现在宽:原来宽注:在计算的过程中,根据实际情况确定使用的简便方法。

第七单元:解决问题的策略

一、替换的策略

1、根据题目意思,写出等量关系。

2、把相等的量互换。

3、根据题意列方程解答。

二、假设的策略(鸡兔同笼问题及延伸题)例:(大船坐的人数×总船数-总人数)÷(大船坐的人数-小船坐的人数)=小船数(总人数-小船坐的人数×总船数)÷(大船坐的人数-小船坐的人数)=大船数假设全部为其中的一种,用假设的这种×总头数和总脚数作比较谁大谁作被减数,再除以两种脚之差,所求出的为另一种的只数。

(1)已知总头数和总脚数,求鸡、兔各多少:

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)

(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

(5)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费__元,破损者不仅不给运费,还需要赔成本__元。它的解法显然可套用上述公式。)

第八单元:可能性

求摸到某种球的可能是几分之几?

这种球的个数÷总个数=这种球的个数/总个数

第九单元、认识百分数

1、百分数:表示一个数是另一个数的百分之几的数叫百分数,又叫百分比或百分率。通常在原来的分子后面加“%”来表示:如30/100可以写成30%注:在用%号表示百分数中,后面带单位的百分之几不能用%表示。

2、百分数与小数的互化

(1)、小数化为百分数:一位小数写成十分之几,分子分母同时扩大10倍;两位小数写成百分之几;三位小数写成千分之几,分子分母同时缩小10倍……。(或把小数的小数点向右移动两位,后面加上百分号)

(2)百分数化为小数:把百分数的分子分母同时缩小100倍(即把百分数的分子小数点向左移动两位)

3、分数与小数的互化

(1)分数化为小数:分数的分子除以分母,结果保留三位小数

(2)小数化为分数:一位小数写成十分之几;两位小数写成百分之几;三位小数写成千分之几;然后约成最简分数。

4、百分数与分数的互化

(1)分数化为百分数:

A:分母是100的因数或倍数,直接进行通分或约分把分母化为100。

B:分母不是100的因数或倍数,用分子除以分母,所得结果保留三位小数,再根据小数化百分数的方法把这个小数化为百分数。(2)百分数化分数:

A:分子为整数,直接进行约分,约成最简分数。

B:分子为小数,先把百分数扩大相应的倍数,化成分子为整数的分数,再进行约分,约成最简分数。

5、求一个数是另一个数的百分之几?

一个数÷另一个数×100%

6、出勤率=出勤人数÷总人数×100%缺勤率=缺勤人数÷总人数×100%发芽率=发芽种子数÷总种子数×100%成活率=成活棵树÷总种植棵树×100%

2268978