中考数学一模模拟试题及答案(2)
中考数学一模模拟试题答案
1.B 2.C 3.B 4.A 5.C
6.∠B=90°或∠BAC+∠BCA=90°
7.证明:∵四边形ABCD是矩形,
∴AB=CD,AD∥BC,∠B=90°.
∵DF⊥AE,∴∠AFD=∠B=90°.
∵AD∥BC,∴∠DAE=∠AEB.
又∵AD=AE,∴△ADF≌△EAB.
∴DF=AB.∴DF=DC.
8.证明:由平移变换的性质,得
CF=AD=10 cm,DF=AC,
∵∠B=90°,AB=6 cm,BC=8 cm,
∴AC2=AB2+CB2,即AC=10 cm.
∴AC=DF=AD=CF=10 cm.
∴四边形ACFD是菱形.
9.(1)证明:∵点O为AB的中点,OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC.即∠ADB=90°.
∴四边形AEBD是矩形.
(2)解:当△ABC是等腰直角三角形时,
矩形AEBD是正方形.
∵△ABC是等腰直角三角形,
∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.
由(1)知四边形AEBD是矩形,
∴四边形AEBD是正方形.
10.D 11.12
12.5 解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,
∵CB=4,DP=1.∴CP=3,在Rt△BCP中,
BP=BC2+CP2=42+32=5.
13.(1)证明:在矩形ABCD中,
AB=CD,∠A=∠D=90°,
又∵M是AD的中点,∴AM=DM.
∴△ABM≌△DCM(SAS).
(2)解:四边形MENF是菱形.证明如下:
E,F,N分别是BM,CM,CB的中点,
∴NE∥MF,NE=MF.
∴四边形MENF是平行四边形.
由(1),得BM=CM,∴ME=MF.
∴四边形MENF是菱形.
(3)2∶1 解析:当AD∶AB=2∶1时,四边形MENF是正方形.理由:
∵M为AD中点,∴AD=2AM.
∵AD∶AB=2∶1,∴AM=AB.
∵∠A=90,∴∠ABM=∠AMB=45°.
同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.
∵四边形MENF是菱形,∴菱形MENF是正方形.
14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,又∵AE=2t,∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又∵AE=DF,∴四边形AEFD为平行四边形.
当AE=AD时,四边形AEFD是菱形,即60-4t=2t.
解得t=10 s,
∴当t=10 s时,四边形AEFD为菱形.
(3)①当∠DEF=90°时,由(2)知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=60°,∴AD=AE•cos60°=t.
又AD=60-4t,即60-4t=t,解得t=12 s.
②当∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠A=60°,则∠ADE=30°.
∴AD=2AE,即60-4t=4t,解得t=152 s.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=152 s或t=12 s时,△DEF为直角三角形.
猜你感兴趣:
中考数学一模模拟试题及答案(2)
上一篇:中考语文一模试卷带答案
下一篇:中考数学第一轮复习题及答案