学习啦>实用范文>心得体会>读书心得>

《数学简史》心得体会范文

时间: 燕纯0 分享

  一气呵成,读完《数学简史》,心底不由得涌上一股冲动,那是一种什么感觉呢?对了,是感动,是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。接下来是小编为大家整理的《数学简史》心得体会范文,希望大家喜欢!

  《数学简史》心得体会范文一

  《中学数学简史》内容概要:所选内容贴近高中生数学水平,针对中学实际,以史为据,精选史料,用通俗、生动的语言介绍数学产生、发展规律,数学思想方法等。适于高中学生、中学教师和具有中等以上文化程度的其他读者阅读……

  《中学数学简史》读后感,来自卓越亚马逊网友:比想象的要好很多,MorrisKline的名著《古今数学思想》完全忽视了中国的曾经灿烂的数学历史。看了这本书,你会为中华民族曾经领先世界几千年的杰出数学文化而自豪,可惜在元代以后没落了,书中的大量数学家轶事也很生动有趣!很值得一读……

  中学数学简史的读后感,来自京东网的网友:我不得不说,这是我看过最生动有趣的数学史书籍,而且看过后对于各数学分支的来龙去脉即可得到很清晰的形象,我觉得本书对于中学数学的学习不但不是额外的负担,对于想在数学领域扎根的人们,掌握数学史,绝对是不可绕过的必要之路!而本书恰恰是非常适合中学生,甚至对于离开校园20多年的我仍然给于我极大的阅读乐趣!(最近3个月为了工作需要我重拾中学数学内容,买了超过50本相关数学参考书,所以对此书绝无过誉)我在此,极力向你推荐本书,因为它不但能保证让你“学到你以前所不知道的数学史实”同时还让你“惊叹于著者活泼、生动、有趣且深入浅出的笔法”,所以看这本书绝对是一种享受……

  数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

  数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。

  《数学简史》心得体会范文二

  随着时光的不断流逝,你可曾想过,时间是否会有源头?过去的时光在哪里停止,未来的时间又从哪里是出发?《时间简史》这一书将会带你思索,让你领略宇宙的神奇。不由分说,黑洞和宇宙爆炸是整本书的重点。

  读完整本书,我们知道,黑洞并不是爱因斯坦说的那样。其实,黑洞不黑。书中写道他假设如果存在一空间的曲率非常大,物体的逃逸速度非常快,快到连光也不能逃离这样的空间。那么这样的空间可以称之为“黑洞”。但他认为既然连光也不能逃离黑洞,那么我们也无法观测到它,它名副其实是一个非常黑的洞。但霍金结合了爱因斯坦的相对论和量子理论后提出:黑洞其实不“黑”,它可以放射出正反粒子,而且它还有这很高的温度。正因为它放射出的正反粒子互相湮灭了,所以我们很难观测到它。黑洞以极高的速度放射能量,当能量耗尽时则会向宇宙大爆炸那样从一个奇点发生强烈的爆炸,并在宇宙中消亡。

  黑洞只是宇宙的一部分,那么宇宙又是如何产生的呢?

  宇宙是从一个密度、时空曲率无限大的奇点通过大爆炸而开始的,在大爆炸中,物质的温度非常高。在随后过去的一秒钟中,宇宙的温度急剧下降,下降到100亿摄氏度,于此同时也在不断地膨胀,就使得正电子和反电子(带正电荷的电子)互相碰撞以此湮灭,并释放出大量光粒子,来维护宇宙的平衡。到了后来,得以有强力的作用从而使物质不断聚拢,聚拢,这就形成了古老的星球和星际物质。我们的地球,也是通过这样的物质聚拢才形成的。

  也许人类在整个宇宙中是十分渺小的,但霍金用他被禁锢的身躯,在宇宙中畅游,,他凭借自己的智慧,向真理发出了挑战,为人类的进步作出了巨大的贡献。

  读完整本是,我感叹道:面对浩瀚的大海,我只是发现了岸旁的一粒沙子。面对广阔无垠的大海,仍需我们努力的探索啊!

  《数学简史》心得体会范文三

  数论专家写的数学历史简史,条理性,逻辑性强,作者奇才博学,读书多,文字精彩,有大手笔。整本书简明扼要,通俗易懂,精彩。特别是他对于过去世界数学历史的回顾,没得说。它都是些“经典”的诠释与介绍。

  读数学历史的意义?如同哲学家,思想家。布莱士·帕斯卡曾说过:“不认识整体就不可能认识局部,同样,不认识局部也不可能认识整体。”这像中国常言道,“不观全局,不足以为谋”。同时他还强调“一叶知秋”的重要。其实,在学习所有学科领域应该都是如此。

  尽管作者涉及介绍数学历史内容太广,太丰富,他在关注数学思想美或者算法思想本身及将来数学发展的前景或者未来数学发展思想萌芽方面的介绍,居然都不欠缺。特别是面对将来,数学毕竟更多,更大的挑战是要面对未来,像量子物理,AI算法等,它也都有介绍。

  只是好像如何对于控制调节“复杂系统”之全新数学缺乏有挑战的系统思考,或者似乎需要有更多或者大手笔对于未来数学发展,像能够有“一叶知秋”的深思熟虑,或者列出还有哪些数学有待证明难题挑战?如果作者能够有一个简单清单,可能就更精彩。因为现在似乎不缺对于一个不是数学家都可以总结内容书。例如,过去的数学。特别是用如此多笔墨与精力介绍已经知道的数学历史,多少有点像是一种人才极大浪费。因为介绍数学家们及其数学或者八卦故事小册字已经成堆了。当然,本作者下半部分有关现代数学内容介绍及数学应用部分最精彩!这也可能正是他的书与众不同的地方。它能够开人的数学大眼界。

  如此有上建议,是因为来自对于数学吃瓜读者的兴趣或者好奇心,及未来新一代读者,更关心的可能是哪些有挑战或者未知的,激发人想象力东东。因为人对精神包括数学领域的创造是有一种强烈的渴求,如果没有这样一种渴求,也许就不会有下一位“新的爱因斯坦”式人物,也不会有新一代有影响力的大哲学家,思想家,大数学家。一本经典书一般涉及过去,现在及未来。所以,衷心希望作者能定位更好, 集中精力在下一部近代数学介绍书中,只关注高精尖内容,将其他内容留给一般科普普通作者。附录中内容介绍到2006年,数学界最终确认俄罗斯的佩雷尔曼证明了庞加莱猜想。 满分好书!

  《数学简史》心得体会范文四

  我不知道人们为什么长久以来称数学为“科学的女皇”,也许是女皇有着一种让人无法亲近的神秘感,但是她的面容又是如此的让人们向往和陶醉。女皇陛下,揭开你神秘的面纱,让我目睹你绝世的风姿,体会你无尽的风韵,感动你带给我所有的感动吧!

  仰望者,唯巨星也!数学的漫漫长河中,涌出过无数的璀璨巨星,从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特……当他们一个个从我的心底流过时,有一种兴奋,更有一种感动,他们才是时代真正的弄潮儿。

  欧几里得的《几何原本》开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;

  祖冲之关于圆周率的密率(355/113)给了国人足够骄傲的资本,也把“割圆术”发挥到了极致;

  牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。

  一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。

  1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。

  就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。

  天才往往是孤独的,先知者注定得不到世人的理解。

  许多天才的数学家,英年早逝,终生难以得志。

  椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。

  同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。

  集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。

  ……

  天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?

  在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。

  每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。

  第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。

  第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。

  第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

  滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?

《数学简史》心得体会范文相关文章

1.学校工作总结优秀范文最新5篇2020

《数学简史》心得体会范文

一气呵成,读完《数学简史》,心底不由得涌上一股冲动,那是一种什么感觉呢?对了,是感动,是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者
推荐度:
点击下载文档文档为doc格式

精选文章

  • 《数学简史》心得体会感悟
    《数学简史》心得体会感悟

    《数学简史》是一本解释宇宙学基本原理,探索宇宙未来的书。那么你们是怎么写这本书的读后感的呢?接下来是小编为大家整理的《数学简史》心得体会

  • 《用心去工作》读书心得体会范文5篇
    《用心去工作》读书心得体会范文5篇

      读完《用心去工作》这本书后,我理解用心去工作就是要全心全意的去工作,热爱自己的工作,把本职工作做好。下面是小编为大家整理的《用心去工

  • 湘行散记心得体会600字5篇
    湘行散记心得体会600字5篇

      读《湘行散记》你会发现,她名虽似_记,却并不是一般的出行心情记事。接下来是小编为大家整理的湘行散记心得体会600字,希望大家喜欢!  湘行

  • 初中生边城的阅读心得体会大全
    初中生边城的阅读心得体会大全

      携一本《边城》,让思维去浪迹天涯,我们会感受到“边城”所有的温暖、质朴。接下来是小编为大家整理的初中生边城的阅读心得体会大全,希望大

424395