用比例解决问题教学反思总结
用比例解决问题这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。下面小编就和大家分享用比例解决问题教学反思,来欣赏一下吧。
用比例解决问题教学反思(一)
《用比例解决问题》这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比 例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了是知识更加到位,所以我对教材作了处理,把例5作为单独的一 个内容教学。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正比例应用题中所涉及到的基本问题的数量关系是学生以前 学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正比例关系解决一些基本问题的思路和计算方 法,从而进一步提高学生分析解答应用题的能力。
在教学中通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系。在教学中要特别强调,一定要根据比例式来列 出比例。因为正比例的比例式可以通过变形成为乘法等式。为了区别于反比例,所以这个知识点一定要强调到位。同时,在教学中又要渗透简易方程的认识。在教学 上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断。
在数学教学中重视数学活动。在探究用正、反比例解决问题的过程中,充分展示学生的思维过程。把学生在解决问题中所有情况都罗列出来,并让它们进行说解题思 路的活动。这一过程进行的非常出彩。在学生用多种方法解题的基础上,重点展示用正比列解决问题,当学生用多种方法列出比例式后,进行小结:虽然比例的书写 比较麻烦,但是用比例解决问题还是有自身的优势所在的。
在练习的设计中我注重了练习生活实际,特别是当出示课件:树高与树的影长,人高与人影长,进行提问:如何用比例的知识去解决测量树高的?是把树砍了测量 吗?此时学生很自觉的运用了比例的知识,通过测量三个可以测量的数据,用比例求出树高。此时又加入了这样一题:小丽要测量一大捆铁丝的长度,从中截取了5 米长的一段,测得其质量为400克。现测得这捆铁丝的质量为6千克。这捆铁丝长多少?知识总是在相互沟通中慢慢建构的。
存在的问题及改进策略:学生习惯于用算术法解决这类问题,很难接受用比例的知识解决这样的问题,把学生从传统的算术方法中释放出来才是问题的关键,因为习 惯是难以改变,一种新的思维的注入是需要时间去改变的,所以对于用比例来解决问题必须在以后的课堂中经常提到,去改变他们传统的思维习惯。
用比例解决问题教学反思(二)
《用比例解决问题》这节课教学设计主要抓住比例解答应用题的特征进行的。回顾本节课教学,有以下几点感受颇深:
首先进行复习,一是两种相关联的量成什么比例关系,二是如何判断两种相关联的量成什么比例,怎样找出等量关系。为新课教学作好铺垫。
新知的教学采用了以旧知引路——学生自主探索——小组合作学习的形式进行,注意给学生充分交流的机会与思考的空间。整节课的设计主要体现在“问”与“练”字上,怎样问,练什么,怎么练,我都做了认真的思考,深入研究,特别是在设计教学过程时把学生放在首位,考虑学生已经会什么,他们现在最需要什么。学生通过什么途径来解决,是独立思考还是合作交流等等问题。做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据老师的巧妙设问和富有启发性的引导,通过自主学习、合作交流,很快就掌握了新课的内容。
但是,在实际教学过程中,这堂课的教学也还存在着不少问题:
比如,对学生基础估计太高,从学生回答问题看,复习时学生对判断哪两种相关联的量成什么比例掌握不错,但到了比例应用题里,我围绕比例应用题的特征设问:题目中有三种量?哪种量是固定不变的?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能写出等式吗?一部分学生不会确定哪种量一定,怎样找出等量关系掌握不好,语言表达不是很准确、完整。这点我备课时没作为重点。学生是课堂的主体,如果课堂上学生基本知识没过关,课堂也就失去了色彩。其次,在教学过程中,我有对学生不放心的心态。比如:在教学例6时,学生有了正比例应用题的基础,对于反比例应用题我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,出一些思考题让学生交流讨论,然后再做题。这样既禁锢了学生的思维,又耽误了教学时间。另外,练习题的设计与学生生活实际结合不算很紧密,以后尽量设计一些能引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性,从而加深了学生对新课的认识。
用比例解决问题教学反思(三)
《数学新课程标准》强调要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与运用的过程。这部分内容主要是正、反比例的实际问题,学习用比例知识来解答。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解。同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。用比例知识解答正、反比例的问题的关键是,使学生能够正确找出两种相关联的量,判断它们成哪种比例,然后根据正比例或反比例的意义列出方程。
因此,教学之前先复习:(1)找出哪一个量是一定的,(2)如何判断两个相关联的量成什么比例。我在教学前先给出一些数量关系,让学生判断成什么比例,是依据什么判断的。
在新课的教学中,围绕比例的知识提问:哪两种量是变化的?哪种量是不变的?使学生弄清这两种变量的比值一定还是乘积一定,它们成什么比例关系?然后根据比例关系写出等式。在教学中通过学生自主探究获得新知,然后进行练习,让学生自始至终参与体验解决问题的全过程。
教学例6,学习用反比例的意义解决问题。课本编排思路与例5相似,我就参照例5的教学进行。我注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。通过例题的教学,结合“做一做”,可以总结出应用比例解答问题的步骤:
1、 分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
2、 根据正比例或反比例意义列出方程。
3、 解方程(求解后检验),写答。
但是,在实际教学过程中,还存在着很多的问题:(1)题目中没有直接告诉哪个量是一定的,需要学生从已知的两个量中发现定量,因此学生有时找不准什么量一定,这样对判断两种相关联的量成什么比例就会出现问题,该列正比例的列成反比例,该列反比例的又列成了正比例。(2)在教学过程中,总是对学生不放心。比如:在教学用反比例解决问题时,我完全可以放手让学生自己独立完成,但又担心学生不会做,最后还是教师包办代替讲了,这样既禁锢了学生的思维,又耽误了教学时间,那些会做的学生也觉得太哆嗦。(3)用比例知识解决实际问题,难度降低,正确率比较高,学生一般都喜欢用。