学习啦>实用范文>办公文秘>方案大全>

经典抽样方案范文4篇

燕琳 时间:

  看来样本容量固然重要(how many),但更重要的还是抽样方案(how)。一般来说,方案分为概率抽样(随机抽样)和非概率抽样两大类。下面小编给大家介绍一下关于抽样方案范文4篇,欢迎大家阅读。

  抽样方案1

  01 非概率抽样(Non-probability sampling)

  又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。

  其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法,或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。

  常用的非概率抽样方法有以下四类:

  ▷ 方便抽样(Convenience sampling)

  指根据调查者的方便选取的样本,以无目标、随意的方式进行。例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。

  优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。

  缺点:抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。

  ▷ 判断抽样(Judgment sampling)

  指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行;也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。

  优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。

  缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。

  ▷ 配额抽样(Quota sampling)

  指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。

  相当于包括两个阶段的加限制的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。

  优点:适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。

  缺点:容易掩盖不可忽略的偏差。

  ▷ 滚雪球抽样(Snowball sampling)

  指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。

  第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。例如:如在目前中国的小轿车车主等。

  优点:可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。

  缺点:有选择偏差,不能保证代表性。

  02 概率抽样(Probability sampling)

  又称随机抽样,指在总体中排除人的主观因素,给予每一个体一定的抽取机会的抽样。

  其特点为,抽取样本具有一定的代表性,可以从调查结果推断总体;操作比较复杂,需要更多的时间,而且往往需要更多的费用。

  常用的有以下六种类型:

  ▷ 简单抽样(Simple sampling)

  简单随机抽样(simple random sampling)又称纯随机抽样,是概率抽样的最基本形式。它是按等概率原则直接从含有N个元素的总体中随机抽取n个元素组成样本(N>n)。

  常用的办法类似于抽签,即把总体的每一个单位都编号,将这些号码写在一张张小纸条上,然后放入一容器(如纸盒、口袋)中,搅拌均匀后,从中任意抽取,直到抽够预定的样本数目。这样,由抽中的号码所代表的元素组成的就是一个简单随机样本。

  比如,某系共有学生300人,系学生会打算采用简单随机抽样的办法,从中抽取出60人进行调查。为了保证抽样的科学性,他们先从系办公室得到一份全系学生的名单,然后给名单中的每个学生都编上一个号(从001到300)。抽样框编好后,他们又用300张小纸条分别写上001,002,…,300。他们把这300张写好不同号码的小纸条放在一个盒子里,搅乱后,随便摸出60张小纸条。然后,他们按这60张小纸条上的号码找到总体名单上所对应的60位同学。这60位同学就构成了他们本次的样本。这种方法简便易学。但当总体元素很多时,写号码的工作量就很大,搅拌均匀也不容易,因而此法往往在总体元素较少时使用。

  对于总体元素很多的情形,我们则采用随机数表来抽样。本书后就附有一张随机数表,表中的数码和排列都是随机形成的,没有任何规律性(故也称为乱数表)。利用随机数表进行抽样的具体步骤是:

  先取得一份总体所有元素的名单(即抽样框);

  将总体中所有元素一一按顺序编号;

  根据总体规模是几位数来确定从随机数表中选几位数码;

  以总体的规模为标准,对随机数表中的数码逐一进行衡量并决定取舍;

  根据样本规模的要求选择出足够的数码个数;

  依据从随机数表中选出的数码,到抽样框中去找出它所对应的元素。

  ▷ 系统抽样(Systematic random sampling)

  将总体中的各单元先按一定顺序排列,并编号,然后按照不一定的规则抽样。其中最常采用的是等距离抽样,即根据总体单位数和样本单位计算出抽样距离(即相同的间隔),然后按相同的距离或间隔抽选样本单位。例如:从1000个电话号码中抽取10个访问号码,间距为100,确定起点(起点<间距)后每100号码抽一访问号码。

  系统抽样的具体步骤是:

  给总体中的每一个个体按顺序编号,即制定出抽样框。

  计算出抽样间距。计算方法是用总体的规模除以样本的规模。假设总体规模为N,样本规模为n,那么抽样间距K就由下列公式求得:

  K(抽样间距)=N(总体规模)n(样本规模)

  在最前面的K个个体中,采用简单随机抽样的方法抽取一个个体,记下这个个体的编号(假设所抽取的这个个体的编号为A),它称做随机的起点。

  在抽样框中,自A开始,每隔K个个体抽取一个个体,即所抽取个体的编号分别为A,A+K,A+2K,…,A+(n-1)K。

  将这n个个体合起来,就构成了该总体的一个样本。

  优点:兼具操作的简便性和统计推断功能,是目前最为广泛运用的一种抽样方法。如果起点是随机确定的,总体中单元排列是随机的,等距抽样的效果近似简单抽样;与简单抽样相比,在一定条件下,样本的分布较好。

  缺点:抽样间隔可能遇到总体中某种未知的周期性,导致“差”的样本;未使用可能有用的抽样框辅助信息抽取样本,可能导致统计效率低。

  ▷ 分层抽样(Stratified random sampling)

  是把调查总体分为同质的、互不交叉的层(或类型),然后在各层(或类型)中独立抽取样本。例如:调查零售店时,按照其规模大小或库存额大小分层,然后在每层中按简单随机方法抽取大型零售店若干、中型若干、小型若干;调查城市时,按城市总人口或工业生产额分出超大型城市、中型城市、小型城市等,再抽出具体的各类型城市若干。

  优点:适用于层间有较大的异质性,而每层内的个体具有同质性的总体,能提高总体估计的精确度,在样本量相同的情况下,其精度高于简单抽样和系统抽样;能保证“层”的代表性,避免抽到“差”的样本;同时,不同层可以依据情况采用不同的抽样框和抽样方法。

  缺点:要求有高质量的、能用于分层的辅助信息;由于需要辅助信息,抽样框的创建需要更多的费用,更为复杂;抽样误差估计比简单抽样和系统抽样更复杂。

  在实际运用分层抽样的方法时,研究者需要考虑下列两个方面的问题

  (1)分层的标准问题。同一个总体可以按照不同的标准进行分层,或者说,根据不同的标准可以将一个总体分成不同的类别或层次。那么,在实际抽样中究竟应该按什么标准来分层呢?通常采用的原则有:

  第一,以所要分析和研究的主要变量或相关的变量作为分层的标准。比如,若要研究居民的消费状况和消费趋向,可以以居民家庭人均收入作为分层标准;又如,要了解社会研究中不同职业的人员对社会经济改革的看法,就可以以人们的职业作为分层的标准。

  第二,以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。比如在工厂进行,可以以工作性质作为分层标准,将全厂职工分为干部、工人、技术人员、勤杂人员等几类来进行抽样。

  第三,以那些已有明显层次区分的变量作为分层变量。比如在社会研究中,性别、年龄(当然是分段以后,如老、中、青)、文化程度、职业等等,就经常被用作分层的标准;其他如学生按年级、专业、学校类型分层,城市按人口规模分层等等。

  (2)分层的比例问题。分层抽样中有按比例和不按比例分层两种方法。按比例分层抽样是指按总体中各种类型或层次的比例来抽取子样本的方法。即在单位多的类型或层次中所抽的子样本就大一些,在单位少的类型或层次中所抽的子样本就小一些。比如,某厂有工人600人,按性别分层则有男工500人,女工100人。总体中两类工人人数的比例为5∶1。因此,若要抽60人作样本,那么,按比例的抽法就是根据上述比例,分别从500名男工中随机抽取50人,而从100名女工中随机抽取10人。这样,样本中男女工人之比与总体中男女工人之比完全相同,均为5∶1。可以说,样本的性别结构是总体中性别结构的一种缩影。

  采取按比例分层抽样的方法,可以确保得到一个在某种特征上与总体结构完全一样的样本。但是,在有些情况下,又不宜采用这种方法。例如,有时总体中有的类型或层次的单位数目太少,若以按比例分层的方法抽样,则有的层次在样本中个案太少,不便于了解各个层次的情况,这时往往要采取不按比例抽样的方法。比如上例中,样本中女工人数过少,此时我们可以采取不按比例抽样的方法,在500名男工中抽30人,在100名女工中也抽30人。这样,样本就能较好地反映出男女两类工人的一般状况,我们也能很好地对男女两类工人的情况进行比较和分析。

  需要但注意的是,我们采用不按比例分层抽样的方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较,但若要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,即通过调整样本中各层的比例,使数据资料恢复到总体中各层实际的比例结构。比如上例中,若要用30个男工、30个女工的收入资料去推断全厂工人的平均收入时,就需要在男工的收入后乘以5/3,而在女工的收入后乘以1/3,再加总平均,否则就会导致推断的偏误。

  ▷ 整群抽样(Cluster sampling)

  是先将调查总体分为群,然后从中抽取群,对被抽中群的全部单元进行调查。例如:入户调查,按地块或居委会抽样,以地块或居委会等有地域边界的群体为第一抽样单位,在选出的地块或居委会实施逐户抽样;市场调查中,最后一级抽样时,从居委会中抽取若干户,然后调查抽中户家中所有18岁以上成年人。

  优点:适用于群间差异小、群内各个体差异大、可以依据外观的或地域的差异来划分的群体。

  缺点:群内单位有趋同性,其精度比简单抽样为低。

  ▷ 多级抽样(Multistage sampling)

  也叫多阶段抽样或阶段抽样,以二级抽样为例,二级抽样就是先将总分组,然后在第一级和第二中分别随机地抽取部分一级单位和部分二级单位。例如:以全国性调查为例,当抽样单元为各级行政单位时,按社会发展水平分层后(或按经济发展水平,或按地理位置分层),从每层中先抽几个地区,再从抽中的地区抽市、县、村,最后再抽至户或个人。

  优点:具体整体抽样的简单易行的优点,同时,在样本量相同的情况下又整群抽样的精度高。

  缺点:计算复杂。

  ▷ 抽中概率与规模成比例抽样(PPS)

  是不等概率中最常用的一种方法,指在总体中参照各单位的规模进行抽样,规模大的被抽取的机会大,总体中每个个体被抽中的概率与该个体的规模成正比的抽样。例如:在进行企业调查时,根据PPS抽样方法抽取企业,令规模大的企业被抽取机会大。

  优点:使用了辅助信息,可以提高抽样方案的统计效率。

  缺点:如果研究指标与规模无直接关系时,不合适采取这种方法。

  此外,在抽样方法划分上,还有多阶段抽样和两相抽样等,有兴趣的读者可参阅其他相关书籍。

  前面谈到抽样方法的一些基本分类和各自特点,需要注意的是,在实际的运用中,一个调查方案常常不是只局限于使用某一种抽样方式,而根据研究时段的不同采用多种抽样方法的组鸽为实现不同的研究目的,有时甚至在同一时段综合运用几种抽样方法。

  例如,设计一个全国城市的入户项目,在抽样上可以分为几个不同的步骤,包括:

  在项目正式开始前,可以采用判断抽样法选出某一城市先作试点,在问卷设计初期可以采用任意抽样法选出部分人群进行问卷试访。

  采用分层随机抽样法,确定全国要分别在多少个超大型市、多少个大型市、多少个中型市、多少个小型市实施(先分出城市的几个层次,再依据研究需要在各层用PPS法选取具体城市)

  采用简单抽样法或PPS抽样法,确定抽出城市中应抽的地块或居委会;

  采用整群抽样法,确定抽出地块或居委会应访问的家庭户;

  在项目后期,可以采用判断抽样法选取某城市进行深入研究。

  抽样方案2

  简单抽样

  总体内的各个个体被抽到的机会均等,就把这种抽样方法叫做简单随机抽样.

  常用的简单随机抽样方法有两种——抽签法和随机数法.

  特点:

  1.总体个数是有限的.

  2.被抽取的样本数n小于总体的个数N.

  3.逐个抽取且不放回.

  4.每个个体被抽到的概率都相等.

  【总结】在简单随机抽样中,个体被抽到的概率与抽样次数无关,每次抽到的可能性均相等.

  系统抽样

  当总体的个数N较大时,将总体按照一定的顺序排列,采用简单随机抽样抽取第一个样本单元,再按顺序抽取其余的样本单元来得到所需要的样本,这种抽样叫做系统抽样,也叫等轴抽样.

  系统抽样的步骤:

  假设要从容量为N的总体中抽取容量为n的样本,步骤为:

  (1)先将总体的N个个体编号.

  例4.某学校有2000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出抽样过程.

  【分析】总体中个体个数达2000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:

  (1)将总体中的个体编号为1,2,3,…,2000;

  (3)在第一段1~20中用简单随机抽样确定起始编号,例如抽到5;

  (4)将编号为5,25,45,…,1985的个体抽出,得到样本容量为100的样本.

  例5.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是(  ).

  A.分层抽样 B.简单随机抽样

  C.系统抽样 D.以上都不对

  【分析】按照一定的规律进行抽取的抽样方法为系统抽样.

  例6.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.

  【分析】用系统抽样的方法是等距的.42-29=13,故样本中另外一个同学的编号为3+13=16.

  例7.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.

  【分析】因为1003÷50=20...3,余数为3,为使总体中的个体数能够被50整除,需要剔除3,抽样间隔即为20.

  【总结】系统抽样适用于总体中个体数较大且个体差异不明显的情况;若总体不能被所需样本数整除,则需要剔除余数,重新编号,取得整数.

  分层抽样

  一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.

  分层抽样适用的条件:总体由差异明显的几部分组成.

  例6.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法(  ).

  A.抽签法 B.随机数表法

  C.系统抽样 D.分层抽样

  【分析】总体由差异明显的几部分组成,故应该用分层抽样.

  例7.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为(  ).

  A.70 B.20

  C.48 D.2

  【分析】由于学校总数为700所,所以抽样比为

  【总结】当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.

  总结

  抽样方案3

  简单随机抽样

  一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

  简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

  直接抽选法。例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

  抽签法又称“抓阄法”。它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。这就是抽签法,与直接抽样法类似。

  另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。下面是随机数字表:

  当然,随机抽样也有不足之处,它只适用于总体单位数量有限的情况,否则编号工作繁重;对于复杂的总体,样本的代表性难以保证;不能利用总体的已知信息等。在市场调研范围有限,或调查对象情况不明,难以分类,或总体单位之间特性差异程度小时采用此法效果较好。

  抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便。如果标号的签搅拌得不均匀,会导致抽样不公平。而随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。

  2分层抽样

  分层抽样又称分类抽样或类型抽样,是先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本。

  分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的。当总体是由差异明显的几部分组成时,往往选择分层抽样的方法。其特点是将科学分组法与抽样法结合在一起,每个个体被抽到的概率都相等N/M。分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。

  下面,是一个实例应用:

  某公司要估计某地家用电器的潜在用户。这种商品的消费同居民收入水平相关,因而以家庭年收入为分层基础。假定某地居民为1,000,000户,已确定样本数为1,000户,家庭年收入分10,000元以下,10,000——30,000元;30,000——60,000元,60,000元以上四层,其中收入在10,000元以下家庭户为180,000户,收入在10,000——30,000元家庭户为350,000户,收入在30,000——60,000元家庭户为3000,000户,收入在60,000元以下家庭户为170,000户,应进行如下抽样,如图:

  分层抽样与简单随机抽样相比,往往选择分层抽样,因为它有显著的潜在统计效果。也就是说,如果从相同的总体中抽取两个样本,一个是分层样本,另一个是简单随机抽样样本,那么相对来说,分层样本的误差更小些。另一方面,如果目标是获得一个确定的抽样误差水平,那么更小的分层样本将达到这一目标。

  总体中赖以进行分层的变量为分层变量,理想的分层变量是调查中要加以测量的变量或与其高度相关的变量。分层的原则是增加层内的同质性和层间的异质性。常见的分层变量有性别、年龄、教育、职业等。分层随机抽样在实际抽样调查中广泛使用,在同样样本容量的情况下,它比纯随机抽样的精度高,此外管理方便,费用少,效度高。

  3系统抽样

  系统抽样也称为等距抽样、机械抽样、SYS抽样,它是首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式。是纯随机抽样的变种。在系统抽样中,先将总体从1~N相继编号,并计算抽样距离K=N/n。式中N为总体单位总数,n为样本容量。然后在1~K中抽一随机数k1,作为样本的第一个单位,接着取k1+K,k1+2K……,直至抽够n个单位为止。

  根据总体单位排列方法,系统抽样的单位排列可分为三类:按有关标志排队、按无关标志排队以及介于按有关标志排队和按无关标志排队之间的按自然状态排列。按照具体实施等距抽样的作法,系统抽样可分为:直线系统抽样、对称系统抽样和循环系统抽样三种。

  在定量抽样调查中,系统抽样常常代替简单随机抽样。由于该抽样方法简单实用,所以应用普遍。系统抽样得到的样本几乎与简单随机抽样得到的样本是相同的。

  下面看一个例子,某产品的口味测试,需要运用等距抽样的方法从某校营销专业90名学生中抽选9名进行测试,如下图:

  系统抽样方式也不是完美的,它相对于简单随机抽样方式最主要的优势就是经济性。系统抽样方式比简单随机抽样更为简单,花的时间更少,并且花费也少。使用系统抽样方式最大的缺陷在于总体单位的排列上。一些总体单位数可能包含隐蔽的形态或者是“不合格样本”,调查者可能疏忽,把它们抽选为样本。由此可见,只要抽样者对总体结构有一定了解时,充分利用已有信息对总体单位进行排队后再抽样,则可提高抽样效率。

  4整群抽样

  整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

  应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

  整群抽样优点是实施方便、节省经费;整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

  例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

  整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;分层抽样的样本时从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

  以上几种抽样方法的误差程度排序从大到小一般是:整群抽样、简单随机抽样、系统抽样、分层抽样。

  5配额抽样

  配额抽样也称“定额抽样”,是指调查人员将调查总体样本按一定标志分类或分层,确定各类(层)单位的样本数额,在配额内任意抽选样本的抽样方式。

  例如一在一项关于某品牌洗发水的消费者座谈会的研究抽样中,研究对象为18—40岁的女性。已确定样本量为24人。研究者选择“经济收入”和“发型”为控制特征;并要求高低收入者各占50%,烫、直发型各占50%。根据上述要求一个配额抽样的控制表便可设计出来。如下表:

  配额抽样和分层随机抽样相比较,既有相似之处,也有很大区别。配额抽样和分层随机抽样有相似的地方,都是事先对总体中所有单位按其属性、特征分类,这些属性、特征我们称之为“控制特性。”例如市场调查中消费者的性别、年龄、收入、职业、文化程度等等。然后,按各个控制特性,分配样本数额。但它与分层抽样又有区别,分层抽样是按随机原则在层内抽选样本,而配额抽样则是由调查人员在配额内主观判断选定样本。实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。

  小结

  数学抽样在生活中发挥着重要的作用,在我国,抽样法已被广泛应用于生产技术及社会生活各个领域。目前,国家统计调查制度中所包括的统计指标,依靠抽样方法取得的资料已达到三分之一左右。在城乡住户调查、农产品调查、价格统计、市场调查等领域,应用抽样调查已取得很好的成果,在人口统计、社会统计、交通统计、商业统计等领域,抽样调查也正在发挥越来越重要的作用。随着我国社会主义市场经济的发展,抽样调查的应用范围将逐渐扩大,所发挥的作用也将越来越大。

  抽样方案4

  在确定了研究对象的纳入、排除标准,即划分好设计人群后,从总体中抽取研究样本。抽样的方法非常重要,直接决定了样本是否能够代表总体,也就是外在真实性如何。

  简单随机抽样(simple random sampling)是把符合要求的每一个个体都作为抽样的对象,通过随机化抽取,每个个体被抽中的机会是相等的。因为每个个体被抽中的机会是均等的,所以能保证研究样本对总体的代表性。举个小例子,假设我们研究需要从中抽取200人作为研究样本,总体为1000,如果采用简单随机抽样的方法来获得研究样本,那么总体中每个人被我们抽中的机率都是1/5。

  简单随机抽样的优点是能获得良好代表性的研究样本,操作实施也比较容易理解;其缺点是在抽样范围较大时,需要对总体中每个研究对象进行编号并收集基本信息,工作量太大从而影响研究可行性。另一方面,当某一重要研究因素在人群中分布不均匀时,采用简单随机抽样可能会导致在总体中占比例较少的个体被遗漏,从而导致选择偏倚。分层抽样则可以很好地解决这一问题。

  分层抽样(Stratified Sampling)是从分布不均匀的研究人群中抽取有代表性样本的方法。先按照研究对象的属性(如年龄、性别、病情、病程、临床亚型、职业、教育程度、民族等)将研究人群分为若干层,然后在每层内再开展随机抽样。

  一定要注意,分层抽样要求层内变异越小越好,层间变异越大越好,这样可以提高样本的代表性,便于层间进行比较。分层随机抽样不能保证每个个体被抽中的概率相等,有可能处于不同分层之间的个体被抽中概率是不同的。

  系统随机抽样也称机械随机抽样或等距随机抽样,即将总体单位按某一标志(如时间)排序,然后按一定间隔来随机抽取样本单位。例如,要从100件产品中抽取10件组成样本,首先将100件产品按某一标志排序,顺序编号为1~100;然后用抽签或查随机数表的方法确定1~10号中入选样本的编号(假定为4号);然后按等距原则依次确定入选样本的产品编号为14、24、34、44、54、64、74、84、94;最后由编号为4、14、24、34、44、54、64、74、84、94的10件产品组成样本。

  整群抽样又称聚类抽样,是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群。然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

经典抽样方案范文4篇

看来样本容量固然重要(how many),但更重要的还是抽样方案(how)。一般来说,方案分为概率抽样(随机抽样)和非概率抽样两大类。下面小编给大家介绍一下关于抽样方案范文4篇,欢迎大家阅读。 抽样方案1 01 非概率抽样(Non-probability samp
推荐度:
点击下载文档文档为doc格式

精选文章

  • 抽样方案范文4篇
    抽样方案范文4篇

    抽样检验又称为统计抽检检验,是指从交验的一批产品中,随机抽取若干单位产品组成样本进行检验,通过对样本的检验结果对整批产品做出质量判定的过

  • 元旦晚会策划方案2022最新
    元旦晚会策划方案2022最新

    2022年进入尾声,伴随着新年的钟声我们即将走进2022!在2022元旦来临之际,社会各界都会举办庆祝活动并为此活动制定方案。今天小编整理了元旦庆祝晚会策

  • 消防安全教育主题班会方案精选5篇
    消防安全教育主题班会方案精选5篇

    消防安全主题班会使同学们提高安全警惕,增强防火意识,掌握防火自救技能,消防意识永留心间。下面是小编整理的消防安全教育主题班会方案精选5篇,欢迎

  • 2021感恩节主题班会流程记录5篇
    2021感恩节主题班会流程记录5篇

    感恩节的脚步越来越近,很多学校都会抓住这次机会,对学生进行感恩教育,那么你知道怎么策划好一次感恩节主题班会吗?以下是小编给大家整理的感恩节

287966