学习啦>学习方法>通用学习方法>学习方法指导>

小学数学应用题教学方法有哪些

时间: 巩诗1173 分享

  数学应用题教学,是小学数学教学的重要环节。对小学生进行数学应用题教学,需要掌握好方法

  小学数学应用题教学方法

  (一)培养学生的审题习惯

  准确解答应用题的首要条件是细致地审题,弄明白题意。因此,在教学中要重视培养学生良好的审题习惯。解应用题时,可引导学生找出题所含的直接、间接条件,建立起问题与条件之间的联系,从而确定数量关系。审题时要求学生边读题边思考,分析问题中的已知量与未知量之间的关系,划线标出。

  (二)教学生分析应用题的方法

  传授解题过程中,许多学生不明白怎样解题,很多学生习惯于模仿例题和教师的解答方法,遇到练习过的类型能解答,换新类型就无从下手。究其原因,学生没有掌握正确的解题方法,很多学生可能无法理解题目的意思,难以表述出题目中的数量关系。因此,教给学生分析应用题的推理方法,借助于表格、情境图和漫画等方法分析应用题的数量关系,让学生明确解题思路至关重要。

  (三)培养学生掌握正确的解题步骤

  应用题教学中培养良好的解题习惯,同时检查验算和写好答案的习惯至关重要,要注意引导学生按正确的解题步骤解答,让学生进行自我评价总结,强化对的解题方法,找出错的原因所在。列式计算只解决了“如何解答”的问题,“为何这样解答”的问题没有解决。因此,教师应教给学生检查验算的方法,最终发展成学生独立完成。

  (四)帮助学生联系生活,激发学习兴趣

  数学知识来源于生活实际,学习数学的目的是解决生活中的实际问题。兴趣是学习的动力,激发学生解应用题的兴趣,让学生在轻松的环境中解答应用题,可起到事半功倍的作用。《标准》在教学要求中增加了“使学生感受数学与现实生活的联系”,这不仅要求教学要尊重教材、明确教材内容中的知识要素;而且培养了“数学生活化”思想,要从学生熟悉的生活情境和感兴趣的事物出发,选取应用题选材,创设教学情景,把生活问题数学化,数学问题生活化。通过周围熟悉的事物中学习数学和理解数学,使学生感受到数学的趣味和作用,使枯燥的数学问题变为活生生的生活现实。综上所述,在教学中,教师要不断探索和改进教学方法,根据数学应用题的特点教学,引导学生理解、掌握数学应用题解题思路和方法,进而充分调动起小学生的学习兴趣,激发学生的学习动机,最终达到提高学生分析现实问题、解决实际问题能力的目的。

  小学数学应用题常考类型

  一、植树问题

  1、非封闭线路上的植树问题主要可分为以下三种情形:

  ⑴如果在非封闭线路的两端都要植树,那么:

  株数=段数+1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  ⑶如果在非封闭线路的两端都不要植树,那么:

  株数=段数-1=全长÷株距-1

  全长=株距×(株数+1)

  株距=全长÷(株数+1)

  2、封闭线路上的植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  二、置换问题

  题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

  例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

  分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

  列式:(2000-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数 ,100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

  三、盈亏问题(盈不足问题)

  题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

  当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差

  当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差

  当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差

  例:学校把一些彩色铅笔分给美术组的同学,如果每人分给五支,则剩下45支,如果每人分给7支,则剩下3支。求美术组有多少同学?彩色铅笔共有几支?

  (45—3)÷(7-5)=21(人) 21×5+45=150(支)

  四、年龄问题

  年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

  常用的计算公式是:

  成倍时小的年龄=大小年龄之差÷(倍数-1)

  几年前的年龄=小的现年-成倍数时小的年龄

  几年后的年龄=成倍时小的年龄-小的现在年龄

  例:父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

  (54-12)÷(4-1)=42÷3 =14(岁)→儿子几年后的年龄 ,14-12=2(年)→2年后

  答:2年后父亲的年龄是儿子的4倍。

  五、牛吃草问题(船漏水问题)

  若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

  例:一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

  分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

  (15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(头)→可供5头牛吃一天。

  150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天 ,100÷(10-5) =100÷5 =20(天)

  答:若供10头牛吃,可以吃20天。

  六、相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

4171461