学习啦>学习方法>通用学习方法>学习方法指导>

学习数学思想方法的感想有哪些

时间: 欣怡1112 分享

  想要学好数学,学习方法是关键。但是很多同学偏偏就缺少数学学习方法,所以学不好数学,以下是学习啦小编分享给大家的学习数学思想方法的感想的资料,希望可以帮到你!

  学习数学思想方法的感想

  《数学课程标准》中明确指出“教师应帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。那么,究竟什么是数学思想和方法呢?很多老师对此倍感陌生。数学思想是数学研究活动中解决数学问题的根本想法,是对数学内在规律的认识,也是在数学知识和方法做进一步认识和概括的基础上形成的一般性观点;数学方法是在数学研究活动中解决数学问题的具体途径手段和方式的总和,是解决数学问题的策略和程序,是数学思想的具体体现。学生学习数学的最终目的,是要运用所学到的数学知识去解决一些实际问题,要解决问题就要有一定的方式、方法、途径和手段,这就是策略。这种策略无不受到数学思想的影响和支配。而学生一旦掌握了解决问题的方式方法,又可以促进数学思想的进一步形成和完善。可见,两者是既有联系又有区别的辩证统一体,数学思想指导着数学方法,数学方法是数学思想的具体表现,二者是相互依存、相互促进的。可以说,数学思想和方法是数学的灵魂,是创造能力的源泉;良好的数学思想和方法,可使学生终生受益。

  “数学思想方法大众化,并使其在数学课程设计中充分体现,将是设计21世纪数学课程的突破口”。那么,在小学数学教学中,到底要渗透哪些数学思想和方法呢?笔者作了如下探讨。

  一、数形结合的思想方法

  数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题和解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

  例如,我们常用画线段图的方法来解决问题,这是用图形来代替数量关系的一种方法;我们还可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

  二、集合的思想方法

  把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

  如用圆圈图(韦恩图)向学生直观的渗透集合概念,让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

  三、对应的思想方法

  对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

  如新世纪版一年级上册教材中,分别将小兔和小鹿、小猴和小熊、小兔和小鸟一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

  四、函数的思想方法

  恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

  函数思想在新世纪版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

  五、极限的思想方法

  极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。新世纪版教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

  六、化归的思想方法

  化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想,在教学时也经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

  如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

  七、归纳的思想方法

  在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

  如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度,这就运用归

  这就运用归纳的思想方法。

  八、符号化的思想方法

  数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

  新世纪版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校原有7个皮球,又买来4个,学校现在有多少个皮球?要学生填出□ ○ □ = □ (个)。

  符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

  九、统计的思想方法

  在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法。

  新世纪版小学数学除渗透运用了上述数学思想方法外,还渗透了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。在教学中渗透和运用这些教学思想方法,增强了学习的趣味性,调动了学习的主动性,突出了思维的灵活性,渗透了数学的思想方法,发展学生的数学智能。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

  数学学习的体会

  1.正确对待学习中遇到的困难和问题

  在开始学习高中数学的过程中,肯定会遇到不少困难和问题,我们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

  2.要提高自我“适应教师”的能力

  每个老师都有自己的教学特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教师的特点,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好,学得快。

  3.要将“以老师为中心”转变为“以自己为主体,老师为辅导”的学习模式

  数学不是老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的指挥棒转,被动地接受所学知识和方法。

  4.要养成良好的预习习惯,提高自学能力

  预习是一种自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。

  5.要养成良好的审题习惯,提高阅读能力

  审题是解题的关键,数学题是由文字语言,符号语言和图形语言构成的。拿到题目要在已有知识和解题经验基础上,逐字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

  6.要养成解后反思的习惯,提高分析问题的能力

  解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法。如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律。只有勤反思,才能提高自己分析问题的能力。

  7.要养成纠错订正的习惯,提高自我评判能力

  要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题,要反复琢磨,寻找错因。这样,不少问题就会茅塞顿开,豁然开朗,迎刃而解,从而提高自我评判能力。

  8.要养成善于交流的习惯,提高表达能力

  在数学学习过程中,对一些典型问题,同学之间应善于合作,各抒己见,互相讨论,取人之长,补已之短,也可主动与老师交流,说出自己的见解和看法,只有不断交流,才能相互促进,共同提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。

  9.要养成勤学善思的习惯,提高创新能力

  “学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面,全方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。一个人如果长期处于无问题状态,就说明他思考不够,学习能力也就提高不了。

  10.要养成归纳总结的习惯,提高概括能力

  每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化,条理化,专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。

  数学思想整理总结

  1、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  2、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  3、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

  4、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  5、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

  6、演绎法:由一般到特殊的推理方法。

  7、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

  9、归纳法:由一般到特殊的推理方法。

  10、解决问题,就是数形结合思想。数、式能反映图形的准确性,图形能增强数、式的直观性,“数形结合”可以调动和促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。数形结合是研究数学问题的有效途径和重要策略,它体现了数学的和谐美、统一美。华罗庚先生曾用“数缺形时少直觉,形少数时难入微”作高度的概括。常见的情形为:利用数轴、函数的图象和性质、几何模型、方程与不等式以及数式特征可以将代数问题转化为集合问题;利用代数计算、几何图形特征可以将几何问题转化为代数问题;利用三角知识解决几何问题;利用统计图表让统计数据更形象更直观等。

  11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。

  12、函数与方程法:函数的思想就是利用运动与变化的观点、集合与对应的思想,去分析和研究数学中的等量关系,建立和构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决。方程的思想就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。函数与方程的思想实际是就是一种模型化的思想。常见的情形为:数字问题、面积问题、几何问题方程化;应用函数思想解方程问题、不等问题、几何问题、实际问题;利用方程作判断;构建方程模型探求实际问题;应用函数设计方案和探求面积等。

猜你喜欢:

1.数学教师听课学习心得3篇

2.学习数学新课标心得体会3篇

3.数学课程标准解读学习心得总结

4.高中数学学习心得体会

5.学习小学数学新课标心得体会3篇

3732870