六年级上册数学第二单元预习方法
六年级上册数学第二单元预习方法
方法是解决问题的重要策略,一个人掌握了学习的方法,就等于成功了一半。预习也是学习方法的一种,以下是学习啦小编分享给大家的六年级上册数学第二单元知识点预习的资料,希望可以帮到你!
六年级上册数学第二单元知识点预习
第二单元 位置与方向(二)
一、确定物体位置的方法:
1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单 元分数除法
一、倒数
1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、 1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
6、分数除法的意义:
乘法:因数×因数 =积
除法:积÷一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
7、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
8、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
1,解法:
(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)= 单位“1”的量;
例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)
(比多):具体量 ÷ (1+分率)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了1/7,原价多少?
列式是:80÷(1+1/7)
3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3
②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?
列式:1÷(1/5+1/10+1/3)
六年级数学预习方法
1.任务落实预习法
即教师布置预习任务,同学带着明确的预习任务去进行预习。因为同学初学预习时不知从何下手,这时教师设计好预习任务,让同学带着任务去预习,能做到有的放矢,针对性较强。教师先要对自己提出高标准严要求,对相关学习内容要进行了认真研读,提出既有一定的价值,又有吸引力的,能促使同学产生浓厚的学习、探索兴趣的预习任务。教师布置任务时,可以采取表格的形式或者提问的形式,让同学去预习。布置预习任务时一定要注意难度适中,具有诱发性和趣味性,预习要求要明确,可操作性要强。
2.笔记预习法
开始,可以让同学在书上做简单的眉批笔记,在阅读课本后,把自己的理解、体会或独特见解写在书上的空白处;其次,可以让同学做摘录笔记,就是预习后,在笔记本上摘抄重点概念、关键语句等等,以加深对重要知识的记忆、理解,并简单地记下预习过程中的疑惑和不解之处,也可以记录自己在预习中的收获。开始时教师都要抽出一定的课内时间带着同学进行,在要求、步骤、方法、格式上均要给以细致的指导,然后再放手让同学独立预习、做笔记。对于基础比较好的同学,还要会做思维含量较高的反思型预习笔记。在研究过程中,一方面要验证这几种预习方法的适用性,另一方面要寻求其他适用的科学预习方法。
3.温故知新预习法
这是新旧知识联系的预习法。在预习过程中,一方面初步理解新知识,归纳新知识的重点,找出疑难问题,另一方面复习、巩固、补习与新知相联系的旧知识。要求预习新内容时要与学过的旧知识联系起来,做到“温故知新”,联系旧知,学习新知,使知识系统化。
4.尝试练习预习法
对于计算类新授课、练习课,预习时先进行尝试练习,遇到疑难再返回预习例题,然后再尝试练习。通过尝试练习,可以检验同学预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。同学经过自己的努力初步理解和掌握了新的数学知识,要让同学通过做练习或解决简单的问题来检验自己预习的效果。
5.动手操作预习法
对于公式的推导等操作性较强的知识,要求同学在预习过程中亲自动手去实践,通过剪、拼、折、移、摆、画、量、观察、比较等活动,体验、感悟新知识。因为课堂中有动手操作的内容,自然少不了要通过熟悉教材,了解操作过程中所需要用到的工具、材料等,在课前准备好。同学只有亲历了数学知识形成的过程,才能知其所以然。
6.合作式预习法
同学之间互相切磋、交流,可小组合作分工,从不同角度,采用不同的预习方式,结合自己的情感体验来共同完成预习任务。合作式预习培养了同学的团结合作精神,提高了同学解决问题的能力。
六年级数学预习技巧
1、通读数学内容,动手画、圈知识要点,了解主要内容。这一过程主要针对概念性的数学知识。在通读内容的过程中,从整体上了解了新的数学知识。把自己认为重要的概念、结论画一画、圈一圈,使得新课中的主要内容显现出来,为理解和掌握知识做准备。
2、细读内容,理解主要数学知识。这是预习的主要环节。在对数学知识有了一定的了解后,就要指导孩子怎样“消化”这些知识。
01列举身边熟悉的事例来理解概念。数学概念并不是无中生有,而是从具体的例子中抽象出来的。让孩子举一些具体的例子来说明概念,可以帮助其形象理解概念。
02动手实践来感受数学。《课标》指出:“要让学生亲身经历将实际问题抽象成数学模型的过程”,“动手实践、自主探索与合作交流是学生学习数学的重要方式”。在预习时,也应该指导孩子动手实践来理解数学知识。
03大胆尝试解答例题来思考问题。在小学数学课本中有相当一部分内容的设计是以解答数学问题的形式出现的。如果不指导孩子怎样预习这样的内容,就很有可能造成学生读完题后看答案的现象。孩子在似懂非懂的情况下不劳而获,不利于孩子学习能力和习惯的发展。可以先将课本上的解答方法用纸盖住,自己尝试审题、解答。解答后与课本上的方法对照,不会解答再看课本上的。这样通过了自己独立思考和自主探索的过程,就会加深对数学知识的理解。
04巧用对比来分析关系。在数学的学习中“对比”是很重要又经常用到的学习方法,在预习时也是如此。
3、精读难点内容,思考、标注疑点,这是数学预习的重要一环。预习不等于自学,对预习中遇到的疑难之处,要鼓励孩子通过自己的思考和分析,努力去理解知识,不一定非要在预习时解决,发现问题才是预习的关键所在。“学起于思,思源于疑”,预习就是寻疑的过程。因为有了问题,孩子对新课的学习才有目标。有目标的学习,才会达到事半功倍的效果。
4、尝试练习,检验预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。孩子经过自己的努力初步理解和掌握了新的数学知识,要让他通过做练习或解决简单的问题来检验自己预习的效果。既能让孩子反思预习过程中的漏洞,又能让家长发现学生学习新知识时较集中的问题,重点标出,以便课堂上听讲有侧重点。
猜你喜欢: