学习啦>学习方法>通用学习方法>学习态度>

高中数学必修2立体几何怎么学

时间: 欣怡1112 分享

  大家都知道数学立体几何是出了名的难学,但是又不得不学,那应该怎么学呢?以下是学习啦小编分享给大家的高中数学必修2立体几何的学习方法,希望可以帮到你!

  高中数学必修2立体几何的学习方法

  一、逐渐提高逻辑论证能力

  立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

  二、立足课本,夯实基础

  学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

  三、培养空间想象力

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

  四、“转化”思想的应用

  解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

  (1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

  (2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

  (3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

  五、建立数学模型

  新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。

  从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。

  高考数学如何解立体几何题

  1.平行、垂直位置关系的论证的策略:

  (1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

  (2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

  (3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

  2.空间角的计算方法与技巧:

  主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

  (1)两条异面直线所成的角①平移法:②补形法:③向量法:

  (2)直线和平面所成的角

  ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

  ②用公式计算.

  (3)二面角

  ①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

  ②平面角的计算法:

  (i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法 ;(iii)向量夹角公式.

  3. 空间距离的计算方法与技巧:

  (1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

  (2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

  (3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

  4. 熟记一些常用的小结论,诸如:正四面体的体积公式是 ;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

  5.平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

  6.与球有关的题型,只能应用“老方法”,求出球的半径即可。

  7.立体几何读题:

  (1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。

  (2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。

  (3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。

  8、解题程序划分为四个过程:

  ①弄清问题:也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

  ②拟定计划:找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。

  ③执行计划:以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。

  ④回顾:对所得的结论进行验证,对解题方法进行总结。

  高中数学立体几何口诀

  学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。

  点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。

  空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。

  判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。

  要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

  已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

  判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。

  两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。

  面面垂直成直角,线面垂直记心间。

  一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

  空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

  引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。

  知识创新无止境,学问思辨勇攀登。

  多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。

  算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。

  展开分割好办法,化难为易新天地。

猜你喜欢:

1.高中的数学要怎么学才学得好

2.高三立体几何学习方法

3.高中数学立体几何的学习方法有哪些

4.高中数学立体几何女生怎么学好

5.立体几何图形公式大全

3739455