学习啦>学习方法>教学方法>

初中数学优秀公开课教案有哪些

时间: 欣怡1112 分享

  教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。你知道一份优秀的教案是怎么设计出来的吗,一起来看看,下面是学习啦小编分享给大家的初中数学优秀公开课教案的资料,希望大家喜欢!

  初中数学优秀公开课教案一

  (一)创设情境 导入新课

  不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

  如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

  设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

  (二)合作交流 探究新知

  (活动一)探究角平分仪的原理。具体过程如下:

  播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

  设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

  (活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

  分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

  讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

  已知:∠AO B.

  求作:∠AOB的平分线.

  作法:

  (1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

  (2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

  (3)作射线OC,射线OC即为所求.

  设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

  议一议:

  1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

  2.第二步中所作的两弧交点一定在∠AOB的内部吗?

  设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

  学生讨论结果总结:

  1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

  2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

  3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

  4.这种作法的可行性可以通过全等三角形来证明.

  (活动三)探究角平分线的性质

  思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

  这样设计的目的是加深对全等的认识

  初中数学优秀公开课教案二

  一、教材分析

  本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.

  二.教学内容

  本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.

  内容解析:

  教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.

  三、教学目标

  1、基本知识:了解尺规作图的原理及角的平分线的性质.

  2、基本技能

  (1)会用尺规作图作角的平分线。

  (2)会利用全等三角形证明角平分线的性质。

  (3)能运用角的平分线性质定理解决简单的几何问题

  3、数学思想方法:从特殊到一般

  4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

  目标解析:

  通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.

  四、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

  教学难点突破方法:

  (1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.

  五、教法和学法

  本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.

  教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.

  六.教学过程的设计

  活动1.创设情景

  [教学内容1]

  生活中有很多数学问题:

  小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.

  问题1:怎样修建管道最短?

  问题2:新修的两条管道长度有什么关系,画来看一看.

  [整合点1]利用多媒体渲染气氛,激发情感.

  教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.

  [设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.

  活动2.探究体验

  [教学内容2]

  要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.

  教师继续引引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线.

  [设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.

  从上面的探究中可以得到作已知角的平分线的方法.

  [教学内容3]

  把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

  教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.

  [设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.

  教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.

  利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.

  [教学内容4]

  作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45º的角.

  学生独立作图思考,发现直线AB与CD垂直.

  [设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.

  [教学内容5]

  让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.

  问题1:第一次的折痕和角有什么关系?为什么?

  问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?

  学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.

  [设计意图]培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫.

  [教学内容6]

  如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)

  [整合点2]利用多媒体直观优势,突破教学难点.

  结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.

  教师用文字语言叙述得到的结论.引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示.

  证明后,教师强调经过证明正确的命题可作为定理.同时强调文字命题的证明步骤.

  [设计意图]经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而更利于学生的直观体验上升到理性思维.

  活动3.合作交流

  [教学内容7]

  判断正误,并说明理由:

  (1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.

  (2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.

  (3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.

  用多媒体展示判断题 ,学生独立思考完成,并请学生举手发表见解,教师予以肯定、鼓励.

  [设计意图]让学生通过辨析来理解和巩固角平分线的性质定理.

  [教学内容8]

  让学生运用本节课所学的知识回答课前引例中的问题:

  问题:引例中两条管道的长度有什么关系?理由是什么?

  再次展示引例情景,用抢答的形式请同学们举手回答.

  [设计意图]运用所学性质回答课前引例中的问题,让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学.同时利用抢答形式更好活跃课堂气氛.

  [教学内容9]

  例题讲解

  例1 如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.

  求证:EB=FC.

  变题1:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BD=DF,求证:CF=EB.

  变题2:如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,BC=8,BD=5,求DE.

  [整合点3]多媒体的运用,促进了课堂教学方法与模式的变革.

  教师用多媒体展示问题,学生观察识图,独立思考,并且在小组内讨论交流,找出证明思路,再鼓励学生通过实物投影展示自己的证明过程,教师点评一题多变及一题多解.

  [设计意图]本组例题的解决是为突出重点、突破难点而设计的一项活动.让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形.同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力.两道变题同时展示,符合高效课堂要求.

  通过学生观察识图、独立思考、小组讨论,培养学生合作交流的意识.

  例2已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.

  限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程.

  [设计意图]例2限时独立完成,并展示.通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度.

  活动4.评价反思

  [教学内容10]

  1、这节课你有哪些收获,还有什么困惑?

  2、通过本节课你了解了哪些思考问题的方法?

  教师让学生畅谈本节课的收获与体会.学生归纳、梳理交流本节课所获得的知识技能与情感体验.

  [设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.

  5.布置作业

  [教学内容11]

  作业,必做题:教材第22页第1、2、3题; 选做题:教材第23页第6题

  教师布置作业,学生独立完成.

  [设计意图]设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成.选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的.

  (一)板书设计:

  (二)时间安排:

  创设情景约4分钟,探究体验约13分钟,合作交流约18分钟,评价反思约6分钟,机动时间约4分钟.

  (三)教学设计说明:

  本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实.

  初中数学优秀公开课教案三

  一、教学目标

  1.理解一个数平方根和算术平方根的意义;

  2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

  3.通过本节的训练,提高学生的逻辑思维能力;

  4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

  二、教学重点和难点

  教学重点:平方根和算术平方根的概念及求法.

  教学难点:平方根与算术平方根联系与区别.

  三、教学方法

  讲练结合.

  四、教学手段

  多媒体

  五、教学过程

  (一)提问

  1.已知一正方形面积为50平方米,那么它的边长应为多少?

  2.已知一个数的平方等于1000,那么这个数是多少?

  3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

  这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

  1.(  )2=9;   2.(  )2 =0.25;

  5.(  )2=0.0081.

  学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

  由练习引出平方根的概念.

  (二)平方根概念

  如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

  用数学语言表达即为:若x2=a,则x叫做a的平方根.

  由练习知:±3是9的平方根;

  ±0.5是0.25的平方根;

  0的平方根是0;

  ±0.09是0.0081的平方根.

  由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

  (   )2=-4

  学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).

  (三)平方根性质

  1.一个正数有两个平方根,它们互为相反数.

  2.0有一个平方根,它是0本身.

  3.负数没有平方根.

  (四)开平方

  求一个数a的平方根的运算,叫做开平方的运算.

  由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

  (五)平方根的表示方法

  一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

  练习:1.用正确的符号表示下列各数的平方根:

  ①26②247③0.2④3⑤

  解:①26 的平方根是

  ②247的平方根是

  ③0.2的平方根是

  ④3的平方根是

  ⑤ 的平方根是

猜你喜欢:

1.初中数学优质课听课心得3篇

2.初中数学新课程教案有哪些

3.初中数学探究课教案有哪些

4.初中数学公开课评议

5.北师大版初中数学教案有哪些

初中数学优秀公开课教案有哪些

教案一般包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等内容。你知道一份优秀的教案是怎么设计出来的吗,一起来看看,下面是学习啦小编分享给大家的初中数学优秀公开课教案的资料,希望大家喜欢! 初中数学
推荐度:
点击下载文档文档为doc格式

精选文章

  • 初中数学一元二次方程复习教案
    初中数学一元二次方程复习教案

    数学学习是一个循序渐进的过程,需要同学们不断的学习和努力。下面是学习啦小编分享给大家的初中数学一元二次方程复习教案的资料,希望大家喜欢

  • 初中数学教学教学应该怎么设计
    初中数学教学教学应该怎么设计

    教案是教师上课必不可少的工具,想了解更多的信息吗,和学习啦小编一起看看吧!下面是学习啦小编分享给大家的初中数学教学教学设计的资料,希望大家

  • 初中数学新课程教案有哪些
    初中数学新课程教案有哪些

    教师为了能够很好的授课平常都会在课前设计好教学教案,一起去看看,教案是怎么设计的吧。下面是学习啦小编分享给大家的初中数学新课程教案的资料

  • 初中数学新课标教案怎么设计
    初中数学新课标教案怎么设计

    教案是教师对一节课的整体设想,创造性的教学设计,教案能够有效的提高教学效率。所以教室们都会在课前设计好教案。下面是学习啦小编分享给大家的

3719177