学习啦 > 学习方法 > 教学方法 > 初中初二数学说课教案怎么设计

初中初二数学说课教案怎么设计

时间: 欣怡1112 分享

初中初二数学说课教案怎么设计

  初中初二数学说课教案怎么设计?想了解更多的信息吗,和学习啦小编一起看看吧!下面是学习啦小编分享给大家的初中初二数学说课教案设计的资料,希望大家喜欢!

  初中初二数学说课教案设计一

  14.1.4多项式除以单项式

  一、学习目标:1.多项式除以单项式的运算法则及其应用.

  2.多项式除以单项式的运算算理.

  二、重点难点:

  重 点: 多项式除以单项式的运算法则及其应用

  难 点: 探索多项式与单项式相除的运算法则的过程

  三、合作学习:

  (一) 回顾单项式除以单项式法则

  (二) 学生动手,探究新课

  1. 计算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2. 提问:①说说你是怎样计算的 ②还有什么发现吗?

  (三) 总结法则

  1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

  2. 本质:把多项式除以单项式转化成______________

  四、精讲精练

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  随堂练习: 教科书 练习

  五、小结

  1、单项式的除法法则

  2、应用单项式除法法则应注意:

  A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

  B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

  C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

  D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

  E、多项式除以单项式法则

  初中初二数学说课教案设计二

  14.2.1 平方差公式

  一、学习目标:1.经历探索平方差公式的过程.

  2.会推导平方差公式,并能运用公式进行简单的运算.

  二、重点难点

  重 点: 平方差公式的推导和应用

  难 点: 理解平方差公式的结构特征,灵活应用平方差公式.

  三、合作学习

  你能用简便方法计算下列各题吗?

  (1)2001×1999 (2)998×1002

  导入新课: 计算下列多项式的积.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精讲精练

  例1:运用平方差公式计算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:计算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  随堂练习

  计算:

  (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

  (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

  五、小结:(a+b)(a-b)=a2-b2

  初中初二数学说课教案设计三

  完全平方公式(一)

  一、学习目标:1.完全平方公式的推导及其应用.

  2.完全平方公式的几何解释.

  二、重点难点:

  重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用

  难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算

  三、合作学习

  Ⅰ.提出问题,创设情境

  一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

  (1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

  (2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

  (3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

  (4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

  Ⅱ.导入新课

  计算下列各式,你能发现什么规律?

  (1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

  (3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

  (5)(a+b)2=________;(6)(a-b)2=________.

  两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

  (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

  四、精讲精练

  例1、应用完全平方公式计算:

  (1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

  例2、用完全平方公式计算:

  (1)1022 (2)992

  随堂练习

猜你喜欢:

1.初二数学教学心得6篇

2.八年级上册数学公开课教案

3.初中数学八年级教案怎么设计

4.初中数学说课稿范文3篇

5.初中八年级数学试讲教案模板

3713095