初中数学分式的教案
教案通常又叫课时计划,包括时间、方法、步骤、检查以及教材的组织等。它是教学成功的重要依据。鉴于教案的重要性,下文精心准备了这篇初二上册数学全等三角形教案,我们一起来阅读吧!下面是学习啦小编分享给大家的初中数学分式的教案的资料,希望大家喜欢!
初中数学分式的教案一
一、教学目标
1.使学生理解并掌握分式的概念,了解有理式的概念;
2.使学生能够求出分式有意义的条件;
3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.
二、重点、难点、疑点及解决办法
1.教学重点和难点 明确分式的分母不为零.
2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学
分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1.分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]
2.有理式的分类
请学生类比有理数的分类为有理式分类:
(五)随堂练习
八、布置作业
教材P56中A组3、4;B组(1)、(2)、(3).
九、板书设计
课题 例1
1.定义 例2
2.有理式分类
初中数学分式的教案二
中考数学分式复习
课型 复习课 教法 讲练结合
教学目标(知识、能力、教育) 1. 了解分式、分式方程的概念,进一步发展符号感.
2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力.
3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.
4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值
教学重点 分式的意义、性质,运算与分式方程及其应用
教学难点 分式方程及其应用
教学媒体 学案
教学过程
一:【课前预习】(一):【知识梳理】
1.分式有关概念
(1)分式:分母中含有字母的式子叫做分式。对于一个分式来说:
①当____________时分式有意义。②当___ _________时分式没有意义。③只有在同时满足____________,且____________这两个条件时,分式的值才是零。
(2)最简分式:一个分式的分子与分母______________时,叫做最简分式。
(3)约分:把一个分式的分子与分母的_____________约去,叫做分式的约分。将一个分式约分的主要步骤是:把分 式的分子与 分母________,然后约去分子与分母的_________。
(4)通分:把几个异分母的分式分别化成与____________相等的____________的分式叫做分式的通分。通分的关键是确定几个分式的___________ 。
(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。求几个分式的最简公分母时,注意以下几点:①当分母是多项式时,一般应先 ;②如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;③最简公分母能分别被原来各分式的分母整除;④若分母的系 数是负数,一般先把“-”号提到分式本身的前边。
2.分式性质:
(1)基本性质:分式的分子与分母都乘以 (或除以)同一个 ,分式的值 .即:
(2)符号法则:____ 、____ 与___ _______的符号, 改变其中任何两个,分式的值不变。即:
3.分式的运算: 注意:为运算简便,运用分式
的基本性质及分式的符号法
则:
①若分式的分子与分母的各项
系数是分数或小数时,一般要化为整数。
②若分式的分子与分母的最高次项系数是负数时,一般要化为正数。
(1)分式的加减法法则:( 1)同分母的分式相加减, ,把分子相加减;(2)异分母的分式相加减,先 ,化为 的分式,然后再按 进行计算
(2)分式的乘除法法则:分式乘以分式,用_________做积的分子,___________做积的分母,公式:_________________________;分式除以分式,把除式的分子、分母__________后,与被除式相乘,公式: ;
(3)分式乘方是____________________,公式_________________。
4.分式的混合运算顺序,先 ,再算 ,最后算 ,有括号先算括号内。
5.对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.
(二):【课前练习】
1. 判断对错: ①如果一个分式的值为0,则该分式没有意义( )
②只要分子的值是0,分式的值就是0( )
③当a≠0时,分式 =0有意义( ); ④当a=0时,分式 =0无意义( )
2. 在 中,整式和分式的个数分别为( )
A.5,3 B.7,1 C.6,2 D.5,2
3. 若将分式 (a、b均为正数)中的字母a、b的值分别扩大为原来的2倍,则
分式的值为( )
A.扩大为原来的2倍 ;B.缩小为原来的 ;C.不变;D.缩小为原来的
4.分式 约分的结果是 。
5. 分式 的最简公分母是 。
二:【经典考题剖析】
1. 已知分式 当x≠______时,分式有意 义;当x=______时,分式的值为0.
2. 若分式 的值为0,则x的值为( )
A.x=-1或x=2 B、x=0 C.x=2 D.x=-1
3.(1) 先化简,再求值: ,其中 .
(2)先将 化简,然后请你自选一个合理的 值,求原式的值。
(3)已知 ,求 的值
4.计算:(1) ;(2) ;(3)
(4) ;(5)
5. 阅读下面题目的计算过程:
= ①
= ②
= ③
= ④
(1)上面计算过程从哪一步开始出现错误,请写出该步的代号 。
(2)错误原因是 。
(3)本题的正确结论是 。
三:【课后训练】
1. 当x取何值时,分式(1) ;(2) ;(3) 有意义。
2. 当x取何时,分式(1) ;(2) 的值 为零。
3. 分别写出下列等式中括号里面的分子或分母。
(1) ;(2)
4. 若 ,则 = 。
5. 已知 。则 分式 的值为 。
6. 先化简代数式 然后请你 自取一组a、b的值代入求值.
7. 已知△ABC的三边为a,b,c, = ,试判定三角形的形状.
8. 计算:(1) ;(2)
(3) ;(4)
9. 先阅读下列一段文字,然后解答问题:
已知:方程 方程
方程 方程
问题:观察上述方程及其解,再猜想出方程:x-10 =10 的解,并写出检验.
10. 阅读下面的解题过程,然后解题:
已知 求x+y+z的值
解:设 =k,
仿照上述方法解答下列问题:已知:
四:【课后小结】
初中数学分式的教案三
认识分式(一)
一、问题引入:
1. 叫分式.
2.对于任意一个分式,当 不为0时,分式有意义.
3.当分式的 为0,而 不为0时,分式的值为0.
二、基础训练:
1.代数式式①,②,③,④中,是分式的有( )
A.①② B.③④ C.①③ D.①②③④
2.分式中,当时,下列结论正确的是( )
A.分式的值为零; B.分式无意义
C.若时,分式的值为零; D.若时,分式的值为零
3.下列各式,,,,,0中,是分式的有___________;是整式的有___________;
4.当 时,分式无意义.
三、例题展示:
例1:(1)当=1,2时,分别求分式的值;
(2)当取何值时,分式有意义?
四、课堂检测:
1.下列各式中,可能取值为零的是( )
A. B. C. D.
2.下列各式中,无论取何值,分式都有意义的是( )
A. B. C. D.
3.当______时,分式无意义.
4.当_______时,分式的值为零.
5.使分式无意义,x的取值是( )
A.0 B.1 C. D.
6.解答题:已知,取哪些值时:
(1)的值是零; (2)分式无意义.
7.下列分式,当取何值时有意义.
(1); (2).
猜你喜欢:
2.初中数学标准教案
3.初中数学实教案
4.数学教学方案