学习啦>学习方法>教学方法>

初一数学教案人教版

时间: 欣怡1112 分享

  教师设计教案需要根据学生的实际情况来设计,这样才能让学生学得又快又好。以下是学习啦小编分享给大家的七年级人教版数学教案的资料,希望可以帮到你!

  七年级人教版数学教案一

  有理数

  教学目标:

  1.理解有理数的意义.

  2.能把给出的有理数按要求分类.

  3.了解0在有理数分类中的作用.

  教学重点:会把所给的各数填入它所在的数集图里.

  教学难点:掌握有理数的两种分类.

  教与学互动设计:

  (一)创设情境,导入新课

  讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

  议一议 你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

  说明 我们把所有的这些数统称为有理数.

  试一试 你能对以上各种类型的数作出一张分类表吗?

  有理数

  做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

  有理数

  数的集合

  把所有正数组成的集合,叫做正数集合.

  试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

  (三)应用迁移,巩固提高

  【例1】 把下列各数填入相应的集合内:

  ,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

  【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

  有理数 有理数

  (四)总结反思,拓展升华

  提问:今天你获得了哪些知识?

  由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

  下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

  (五)课堂跟踪反馈

  夯实基础

  1.把下列各数填入相应的大括号内:

  -7,0.125, ,-3 ,3,0,50%,-0.3

  (1)整数集合{};

  (2)分数集合{};

  (3)负分数集合{ };

  (4)非负数集合{ };

  (5)有理数集合{ }.

  2.下列说法中正确的是(  )

  A.整数就是自然数

  B. 0不是自然数

  C.正数和负数统称为有理数

  D. 0是整数,而不是正数

  提升能力

  3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

  七年级人教版数学教案二

  数轴

  教学目标:

  1.掌握数轴三要素,能正确画出数轴.

  2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

  教学重点:数轴的概念.

  教学难点:从直观认识到理性认识,从而建立数轴概念.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示 课本P7的“问题”(学生画图)

  (二)合作交流,解读探究

  师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

  【点拨】(1)引导学生学会画数轴.

  第一步:画直线,定原点.

  第二步:规定从原点向右的方向为正(左边为负方向).

  第三步:选择适当的长度为单位长度(据情况而定).

  第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

  对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?

  (2)有了以上基础,我们可以来试着定义数轴:

  规定了原点、正方向和单位长度的直线叫数轴.

  做一做 学生自己练习画出数轴.

  试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

  讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

  小结 整数在数轴上都能找到点表示吗?分数呢?

  可见,所有的        都可以用数轴上的点表示;        都在原点的左边,        都在原点的右边.

  (三)应用迁移,巩固提高

  【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

  【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

  【例3】下列语句:

  ①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(  )

  A.1个   B.2个  C.3个  D.4个

  【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.

  【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有(  )

  A.1998个或1999个 B.1999个或2000个

  C.2000个或2001个 D.2001个或2002个

  (四)总结反思,拓展升华

  数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

  (五)课堂跟踪反馈

  夯实基础

  1.规定了     、     、      的直线叫做数轴,所有的有理数都可从用      上的点来表示.

  2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是    .

  3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

  A.7 B.-3

  C.7或-3 D.不能确定

  4.在数轴上,原点及原点左边的点所表示的数是(  )

  A.正数 B.负数

  C.不是负数 D.不是正数

  5.数轴上表示5和-5的点离开原点的距离是    ,但它们分别表示 .

  提升能力

  6.与原点距离为3.5个单位长度的点有2个,它们分别是    和    .

  7.画出一条数轴,并把下列数表示在数轴上:

  +2,-3,0.5,0,-4.5,4,3.

  开放探究

  8.在数轴上与-1相距3个单位长度的点有    个,为    ;长为3个单位长度的木条放在数轴上,最多能覆盖    个整数点.

  9.下列四个数中,在-2到0之间的数是(  )

  A.-1 B.1 C.-3 D.3

  七年级人教版数学教案三

  相反数

  教学目标:

  1.借助数轴了解相反数的概念,知道互为相反数的位置关系.

  2.给一个数,能求出它的相反数.

  教学重点:理解相反数的意义.

  教学难点:理解和掌握双重符号简化的规律.

  教与学互动设计:

  (一)创设情境,导入新课

  活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

  交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

  (二)合作交流,解读探究

  1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.

  想一想 (1)上述各对数有什么特点?

  (2)表示这四对数的点在数轴上有什么特点?

  (3)你能够写出具有上述特点的n组数吗?

  观察 像这样只有符号不同的两个数叫相反数.

  互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.

  总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

  2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

  (三)应用迁移,巩固提高

  【例1】填空

  (1)-5.8是    的相反数,    的相反数是-(+3),a的相反数是    ;a-b的相反数是    ,0的相反数是    .

  (2)正数的相反数是    ,负数的相反数是    ,    的相反数是它本身.

  【例2】 下列判断不正确的有(  )

  ①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.

  A.1个  B.2个  C.3个  D.4个

  【例3】 化简下列各符号:

  (1)-[-(-2)];  (2)+{-[-(+5)]};

  (3)-{-{-…-(-6)}…}(共n个负号).

  【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.

  【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

  (四)总结反思,拓展升华

  【归纳】  (1)相反数的概念及表示方法.

  (2)相反数的代数意义和几何意义.

  (3)符号的化简.

  (五)课堂跟踪反馈

  夯实基础

  1.判断题

  (1)-3是相反数.(  )

  (2)-7和7是相反数.(  )

  (3)-a的相反数是a,它们互为相反数.(  )

  (4)符号不同的两个数互为相反数.(  )

  2.分别写出下列各数的相反数,并把它们在数轴上表示出来.

  1,-2,0,4.5,-2.5,3

  3.若一个数的相反数不是正数,则这个数一定是(  )

  A.正数 B.正数或0

  C.负数 D.负数或0

  4.一个数比它的相反数小,这个数是(  )

  A.正数 B.负数

  C.非负数 D.非正数

  5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是       .

  提升能力

  6.若a与a-2互为相反数,则a的相反数是    .

  7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.

初一数学教案人教版

教师设计教案需要根据学生的实际情况来设计,这样才能让学生学得又快又好。以下是学习啦小编分享给大家的七年级人教版数学教案的资料,希望可以帮到你! 七年级人教版数学教案一 有理数 教学目标: 1.理解有理数的意义. 2.能把给出的有理
推荐度:
点击下载文档文档为doc格式

精选文章

  • 初一数学教案
    初一数学教案

    教师不能死扣教案,把学生的思维的积极性压下去。要根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。以下

  • 初中数学复习课教案
    初中数学复习课教案

    所谓教案的艺术性就是构思巧妙,能让学生在课堂上不仅能学到知识,而且得到艺术的欣赏和快乐的体验。以下是学习啦小编分享给大家的初中数学复习课

  • 初一数学第六章教案
    初一数学第六章教案

    教案是针对社会需求、学科特点及教育对象具有明确目的性、适应性、实用性的教学研究成果的重要形式,教案应是与时俱进的。以下是学习啦小编分享给

  • 初一上册数学教学计划有哪些
    初一上册数学教学计划有哪些

    一个好的教学计划可以提高学生的学习成绩,还可以提高教师的讲课质量。那么教师们的教学计划都有哪些?以下是学习啦小编分享给大家的初一上册数学教

3693432