人教版四下平均数教学设计
《平均数》是人教版小学四年级下册第八单元的内容,关于平均数的教学设计有哪些呢?接下来学习啦小编为你整理了人教版四年级下册平均数的教学设计,一起来看看吧。
人教版四下平均数教学设计篇一
一、教学目标
(一)知识与技能
理解平均数的意义,初步学会简单的求平均数的方法。
(二)过程与方法
学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知“移多补少”“对应”等数学思想。
(三)情感态度和价值观
感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。
二、教学重难点
教学重点:理解平均数的含义,掌握求平均数的方法。
教学难点:借助“移多补少”的方法理解平均数的意义。
三、教学准备
课件、实物投影。
四、教学过程
(一)创设情境
1.谈话引入。
以幻灯片形式出示教师家的书橱。
现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。
2.感知课题。
(1)学生思考,想象移动的过程。
(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?
(3)教师:像这样把几个不同的数,通过“移多补少”的方法,得到相同的数,就是这几个数的平均数。
今天,我们就来认识一下“平均数”这个新朋友,好吗?
(板书:平均数)
(二)探究新知
1.引发质疑,探索新知。
教师:看到这个课题,你想通过这节课学习到哪些知识?
预设:
(1)平均数是一个什么数?
(2)怎样计算平均数?
(3)平均数在生活中有什么用?
2.理解含义,探求方法。
出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。
仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?
预设:
(1)小红比小兰多收集多少个瓶子?
(2)小明再给小亮几瓶,他俩的瓶子就一样多?
(3)他们平均每人收集了多少个瓶子?
你怎样理解“平均每人收集了多少个瓶子?”你怎样才能让他们的瓶子数量一样多呢?
学生汇报交流。
小结1:求平均数实际就是把多的补给少的,在数学上叫做“移多补少”。
小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。
(14+12+11+15)÷4=13(个)。
【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握“移多补少”以及“先求和再平均分”的数学方法。
3.理解平均数的含义。
教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?
引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。
小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个“虚拟”的数,反映了这组收集矿泉水瓶数的情况。
教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。
预设:
(1)本周平均最高气温6摄氏度。
(2)三年级学生的平均身高是140厘米。
(3)四年级2班五位同学平均每人捐10本图书。
(4)李莉同学平均每天上学路上花费15分钟。
【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。
(四)全课小结
今天你有什么收获?
再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?
人教版四下平均数教学设计篇二
一、 复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152
提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、 创设情境,自主探索
1. 呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2. 引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4. 理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比最大的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比最大的数小,比最小的数大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
【说明:多媒体演示与学生的交流有机结合,使学生对求平均数的方法——移多补少、先合后分,平均数的意义及取值范围等建立清晰的表象。同时,将平均数学习嵌入一个完整的统计活动中,较好地突出了平均数的统计意义。】
三、 巩固深化,拓展应用
1.下面我们要利用刚才所学的关于统计和平均数的知识,解决一些实际问题。请你 判断下面哪些说法是不合理的。
(1)小丽走8步,共走了560厘米,她每步都走70厘米。(70厘米表示小丽平均每步走了70厘米)
(2)电梯有8个人,她们体重的和是400千克,平均每个人的体重是50千克。(求平均数的方法)
(3)两班共栽树120棵,每班不可能超过60棵。(平均每班栽树60棵,可能一个班栽树70棵,一个班栽树50棵)
和你同桌讨论一下。
2完成“想想做做”第1题。
①从图中你知道了什么?(先数一数每个笔筒里笔的枝数)
②你想怎样求出“平均每个笔筒里有多少枝”铅笔?
③还有其他的方法吗?
学生列式计算,汇报结果。
4、完成“想想做做”第2题。
④从图中你知道了什么?②你想怎么求?
独立解答,汇报结果。
⑤说说你第一步求的是什么?第二步求的什么?
3. 完成“想想做做”第3题。
学校篮球队队员的平均身高是160厘米。
李强是学校篮球队队员,他身高155厘米,可能吗?⑥你是怎么想的?
学校篮球队可能有身高超过160厘米的队员吗?
请你判断,和同桌交流你的想法。
5. 完成“想想做做”第4题。
⑦仔细观察统计图,互相说说你知道了什么?
指名回答第一题,⑧回答这个问题你看的是哪一张统计图?(答句说完整)
第2个问题⑨你是怎么想的?只要看在哪一天卖出的苹果和橘子的箱数相等就可以了。
⑩请学生读第2题,你会计算吗?完成在课堂作业本上。(竖式列在草稿本上)
⑾你还能提出什么问题?(同桌讨论)
【说明:练习设计既重视平均数的求法,更重视对平均数意义的深刻理解。通过估计、预测、判断等一系列数学活动,沟通了数学与现实生活的联系,强化了学生对平均数意义的理解,较好地发展了学生的统计观念和应用意识。】
四、 课堂总结(略)
今天你学会了哪些知识?学会了求平均数的方法有2种。
五、课后拓展
小芳,小丽,小华三人在进行口算比赛。小芳说:“我是冠军,小丽是第三名。我们3人平均一分钟完成了10道口算,每人完成的数量相差一题。” 你知道她们一分钟各完成了多少道口算题吗?