学习啦>学习方法>教学方法>

北师八年级数学下册教案

时间: 威敏0 分享

  八年级第二学期数学内容是中考考试的重要内容,下面学习啦小编为你整理了北师八年级数学下册教案,希望对你有帮助。

  北师初二数学下册教案:乘法公式

  因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.

  首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  教学目标

  知识与技能:

  1.熟记完全平方公式,并能说出它的几何背景

  2.会运用公式进行简单的乘法运算

  3.提高进一步地掌握、灵活运用公式的能力

  过程与方法

  1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力

  2.通过对公式的推导及理解,养成思维严密的习惯

  情感态度价值观:

  感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣

  二、学法引导

  1.教学方法:学生探索与老师讲解相结合.

  重点•难点及解决办法

  重点:会推导完全平方公式,并能运用公式进行简单的计算

  难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.

  课时安排

  1课时.

  教具学具准备

  投影仪或电脑、自制胶片.

  教学过程设计

  看谁算得快

  (1) (x+2)(x+2)

  (2) (1+3a)(1+3a)

  (3) (-x+5y)(-x+5y)

  (4) (-m-n)(-m-n)

  相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  方法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.

  证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2

  公式特征:

  (1)积为二次三项式;

  (2)积中两项为两数的平方和;

  (3)另一项是两数积的2倍,且与乘式中间的符号相同.

  (4)公式中的字母a,b可以表示数,单项式和多项式

  1.首平方,尾平方,积的2倍放中央.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为 ,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为 .

  (2)图B中,正方形的面积为 ,

  Ⅲ的面积为 ,

  Ⅰ、Ⅱ、Ⅳ的面积和为 ,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 .

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.

  3.例题

  (1)引例:计算

  教师讲解:在 中,把x看成a,把3y看成b,则 就可用完全平方公式来计算,即

  【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例2 运用完全平方公式计算:(2) ;(3)

  学生活动:学生独立在练习本上尝试解题,2个学生板演.

  【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  (3)(补充)例3 你觉得怎样做简单:

  ① 102²

  ② 99²

  思考

  (a+b)²与(-a-b)²相等吗?

  (a-b)²与(b-a)²相等吗?

  (a-b)²与a²-b²相等吗?

  为什么?

  4.尝试反馈,巩固知识

  练习一(P90)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用完全平方公式计算:

  (l) (2) (3) (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为什么?

  与 相等吗?为什么?

  学生活动:观察、思考后,回答问题.

  【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  7. 总结、扩展

  ⑴学习了完全平方公式.

  ⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  8.布置作业

  P91 A组 1,4,5

  9.板书设计

  北师初二数学下册教案:特殊的平行四边

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  例1填空.

  (1)在 ABCD中,AB=a,BC=b,∠A=50°,则 ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在 ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知 ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在 ABCD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复平行四边形的面积公式.

  2.证明.

  例2 已知:如图4-16, ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在 ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形: C′BCA, ABCB′, ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  例4 已知:如图4-18(a), ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在 ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

  北师初二数学下册教案:二次根式乘除

  重点难点分析:

  是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

  教学难点 是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

  教法建议:

  1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

  2. 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

  3. 引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

  教学设计示例

  一、教学目标

  1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

  2.会进行简单的二次根式的除法运算;

  3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

  4. 培养学生利用二次根式的除法公式进行化简与计算的能力;

  5. 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

  6. 通过分母有理化的教学,渗透数学的简洁性.

  二、教学重点和难点

  1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

  2.难点:二次根式的除法与商的算术平方根的关系及应用.

  三、教学方法

  从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

  内容可引导学生自学,进行总结对比.

  四、教学手段

  利用投影仪.

  五、教学过程

  (一) 引入新课

  学生回忆及得算数平方根和性质: (a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

  学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

  (二)新课

  商的算术平方根.

  一般地,有 (a≥0,b>0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

  让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

  引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

  例1 化简:

  (1) ; (2) ; (3) ;

  解∶(1)

  (2)

  (3)

  说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

  例2 化简:

  (1) ; (2) ;

  解:(1)

  (2)

  让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

  再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决.

  学生讨论本节课所学内容,并进行小结.

  (三)小结

  1.商的算术平方根的性质.(注意公式成立的条件)

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  (四)练习

  1.化简:

  (1) ; (2) ; (3) .

  2.化简:

  (1) ; (2) ; (3)

  六、作业

  教材P.183习题11.3;A组1.

  七、板书设计
猜你感兴趣:

1.北师大版八年级数学下册教案汇总

2.北师大八年级数学下册教案

3.2016北师大八年级数学下册教案

4.北师大版八年级下册数学教案

5.北师大版八年级数学教案下册第一章

6.北师版八年级数学下册教案圆

2986082