学习啦>学习方法>教学方法>

苏教版全等三角形教案

时间: 芷琼1026 分享

  经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形。接下来学习啦小编为你推荐苏教版全等三角形教案,一起看看吧!

  苏教版全等三角形教案(一)

  【教学目标】

  知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

  过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

  情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

  教学重点:三角形全等的条件.

  教学难点:寻求三角形全等的条件.

  教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

  学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

  课前准备 全等三角形纸片、三角板、 【教学过程】:

  一、创设情境,导入新课

  [师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

  [生]三内角、三条边、两边一内角、两内角一边.

  [师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

  (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

  [生]两种.

  1.两边及其夹角.

  2.两边及一边的对角.

  [师]按照上节方法,我们有两个问题需要探究.

  (二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

  探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

  学生活动:

  1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

  2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.

  教师活动:

  教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.

  二 、探究

  操作结果展示:

  对于探究1:

  画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

  1.画∠DA/E=∠A;

  2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

  3.连结B/C/.

  将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

  小结 : 两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

  如图,在△ABC和△DEF中,

  对于探究2:

  学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:

  1.画∠DB/E=∠B;

  2.在射线B/D上截取B/A/=BA;

  3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的.

  也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

  归纳总结:

  “两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

  两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

  三、应用举例

  [例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离.为什么?

  [师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

  在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

  证明:在△ABC和△DEC中

  所以△ABC≌△DEC(SAS)

  所以AB=DE.

  1.填空:

  (1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

  (2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

  四、练习

  1. 已知: AD∥BC,AD= CB(图3).

  求证:△ADC≌△CBA.

  2.已知:AB=AC、AD=AE、∠1=∠2(图4).

  求证:△ABD≌△ACE.

  五、课堂小结

  1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

  2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

  六、布置作业

  必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

  七、板书设计

2923553