学习啦 > 学习方法 > 教学方法 > 分数的意义说课稿人教版

分数的意义说课稿人教版

时间: 芷琼1026 分享

分数的意义说课稿人教版

  一个物体,一个图形,一个计量单位,都可看作整体“1”。把整体“1”平均分成几份,表示这样一份或几份的数叫做分数。下面学习啦小编给你分享分数的意义说课稿人教版,欢迎阅读。

  分数的意义说课稿人教版

  一、说教材

  教材地位:

  分数的意义和性质这部分内容是在学生对分数已经有了初步的认识、掌握了约数和倍数、最大公约数、最小公倍数等知识的基础上进行教学的。关于分数的意义,学生在四年级时,已借助操作,直观初步认识了分数的基础上教学的。要通过教学使学生从感性上升到理性认识。根据出分数的意义,理解单位“1”和分数单位,这是学生系统学习分数的开始,是本单元的重点,它是解答分数四则运算和应用题的重要基础。

  教学目标:

  (1)通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念

  (2)在活动中培养学生分析、综合、比较、抽象、根据等初步的逻辑思维能力

  (3)体验学习数学的成功和愉悦,培养学生学习数学的积极情感

  教学重点:

  分数意义的归纳与单位“1”的理解

  教学难点:

  把多个物体组成的一个整体看作单位“1”

  教学准备:

  每小组一张圆形纸片,一条一分米长的线段,6个正方体,8个苹果图

  二、 说教法学法

  1、教法

  “分数的意义”一课,是小学数学概念教学比较抽象,学生较难理解的特点,为能使学生较好地理解掌握这一内容,采用启发式教学。教学中充分利用直观演示,遵循概念教学的原则,启发引导学生由感性认识到理解认识,由具体到抽象,充分调动学生学习的积极性、主动性、发展学生的思维能力。

  2、学法

  古人云:“授人一鱼,仅供一饭之需,授人一渔,则终身受用无穷”。现代教学认为教学的任务不仅是传授知识,而重要的是教给学生获取知识的方法。因此,在教学中特别注重加强对学生学法指导。

  (1) 通过教学使学生掌握从具体直观到抽象概括的思维方法,为了使学生建立清晰的分数意义概念,为学生提供了丰富的感性材料。

  (2) 引导多种感官参与学习,培养学生良好的观察能力、分析能力。

  三、 说教学程序

  (一)谈话导入,由旧引新

  分数的意导学案

  教学目标:

  知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

  过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

  情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学难点:

  理解可以用分数表示两个数相除的商。

  教具准备:

  课件

  教学过程:

  一、复习导入

  1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?

  3.引入:5除以9,商是多少?板书:5÷9

  如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

  二、新课讲授

  1.教学例

  1:出示题目

  (1)列出算式。(板书:1÷3=)

  (2)讨论:1除以3结果是多少?你是怎样想的?

  (3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。

  板书:1÷3= 1/3(个)

  2.教学例

  2:出示题目

  (1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (2)口述方法及每份分得的结果,教师总结几种不同的分法。

  (3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。

  由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。

  学生相互说说 表示的意义。

  3.教学分数与除法的关系。

  (1)观察1÷3= 3÷4= 这两道算式,

  想一想

  ①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

  ②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)总结三点

  ①分数可以表示除法的商。

  ②在表示除法的商时,要用除数作分母,被除数作分子。

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。

  分数与除法的关系可以表示成下面的形式

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示

  板书:a÷b=a/b (b≠0)

  (4)这里的b能为0吗?为什么?

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

  (5)分数与除法有区别吗?区别在哪里?

  (分数是一种数,但也可以看作两个数相除,除法是一种运算)

  4.教学例

  3:出示题目

  (1)列出算式。板书:7÷10

  (2)怎样计算?。7÷10=

  三、巩固练习。

  1.做一做:独立完成,集体订正。

  2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

  第3、4题:做在书上,集体订正。

  第5、6题:独立完成,订正时说一说是怎么想的。

  3.作业:练习十二7----11题,选作12题。

  四、课堂小结

  这节课学习了什么知识,你有哪些收获?

  板书设计:

  分数与除法

  例1:1÷3= 1/3(个)

  例2:3÷4=3/4 (个)

  例3:7÷10= 7/10

2812145