学习啦>学习方法>通用学习方法>复习方法>

初一数学下册知识点归纳有哪些

时间: 欣怡1112 分享

  与小学数学相比,初中数学内容多、抽象、理解性强、难度较大,不少学生进入初一之后不适应。为此,以下是学习啦小编分享给大家的初一数学下册知识点归纳,希望可以帮到你!

  初一数学下册知识点归纳

  1.单项式

  对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.

  2.系数

  单项式中的数字因数叫做这个单项式的系数.

  3.单项式的次数

  一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  4.多项式

  几个单项式的和叫做多项式.

  5.多项式的项

  在多项式中,每个单项式叫做多项式的项.

  沪教版七年级数学知识点总结

  -6是常数项.

  6.常数项

  多项式中,不含字母的项叫做常数项.

  7.多项式的次数

  多项式里,次数最高的项的次数,就是这个多项式的次数.

  沪教版七年级数学知识点总结

  8.降幂排列

  把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.

  9.升幂排列

  把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

  沪教版七年级数学知识点总结

  10.整式

  单项式和多项式统称整式。

  11.同类项

  所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.

  12.合并同类项

  把多项式中的同类项合并成一项,叫做合并同类项.

  合并同类项的法则是:

  同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

  13.去括号法则

  括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;

  括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.

  例:a+(b-2c)-(e-2d)=a+b-2c-e+2d

  14.添括号法则

  添括号后,括号前面是“+”号,括到括号里的各项都不变符号;

  添括号后,括号前面是“-”号,括到括号里的各项都改变符号.

  例:m+2x-y+z-5=m+(2x-y)-(-z+5)

  15.整式的加减

  整式加减的一般步骤:

  1.如果遇到括号,按去括号法则先去括号;

  2.合并同类项.

  16.代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.

  初一数学复习方法

  一、注重预习,指导自学。

  我个人认为,预习应该来说在初中阶段还是占有比较重要的地位的,而在小学阶段一般不那么重视,因此,到了初一大多数学生不会预习,即使预习了,也只是将课文从头到尾读一遍。在指导学生预习时应要求学生做到:一粗读,首先大致浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,多问些“为什么”,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。课堂上带着自己的问题听老师讲课,这样可以有目的的学习,提高课堂的有效时间。

  二、认真听讲,会记笔记

  课堂听讲很重要,认真听课可以事半功倍。由于课前进行了充分复习,对本节课还有不理解的地方,那么在老师的讲课过程中,看老师是如何讲解这个知识点的,对比一下自己在预习过程自己存在的障碍。

  对于自己已经理解的知识点也要认真听课,加深记忆,看老师有什么独到之处,对老师强调的地方更应该引起自己的注意。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”

  代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在作笔记时注意:记笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。记笔记是为了更好地总结和复习,切忌在课堂上一味抄写老师的板书。

  三、先复习后做作业

  首先应树立正确的作业观,不要为完成作业而完成作业,作业是为了学生更好地掌握知识,让老师了解学生存在的问题。而许多同学做作业时,通常是拿起题就做,一旦遇到困难了,才又回过头来翻书、查笔记,这是一种不良的习惯。做作业的第一步应是先复习有关的知识。

  初一数学学习技巧

  1.数学运算

  运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击同学学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。认真分析运算出错的具体原因,是提高运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:

  (1)情绪稳定,算理明确,过程合理,速度均匀,结果准确;

  (2)要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。

  2.数学基础知识

  理解和记忆数学基础知识是学好数学的前提。 同一个数学概念,在不同人的头脑中存在的形态是不一样的。

  (1)理解的标准:“准确”、“简单”和“全面”。

  “准确”就是要抓住事物的本质;

  “简单”就是深入浅出、言简意赅;

  “全面”则是既见树木,又见森林,不重不漏。

  对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其包含的数学思想方法和数学思维方法。

  (2)记忆是大脑对知识的识记、保持和再现,是知识的输入、编码、储存和提取。

  借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“一元一次方程”六个字,你就会想到:它的定义是什么?最简方程是什么?它的解的概念,及解方程的一般步骤。不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。

  3.数学解题

  学数学没有捷径可走,保证做题的数量和质量是学好数学的必经之路。

  (1)如何保证数量?

  ① 选准一本与教材同步的辅导书或练习册。

  ② 做完一节的全部练习后,对照答案进行批改。

  ③ 选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。

  ④ 每天保证1小时左右的练习时间。

  (2)如何保证质量?

  ① 题不在多,而在于精。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?

  ② 落实:不仅要落实思维过程,而且要落实解答过程。

  ③ 复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。(建立一本错题集)

  4.数学思想

  数学思想与哲学思想的融合是学好数学的高层次要求。比如,数学思想方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如我们变减法为加法,变除法为乘法,变算术为方程,应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高同学数学素养、培养学生数学能力的重要方法。

猜你喜欢:

1.初一数学上册知识点汇总整理

2.初一数学知识点整理

3.初一数学上册知识点汇总归纳

4.初一上册数学重点知识点归纳总结

5.初一数学上册知识点归纳总结

3820750