学习啦 > 学习方法 > 通用学习方法 > 复习方法 > 初一数学上册方程应用题归纳

初一数学上册方程应用题归纳

时间: 欣怡1112 分享

初一数学上册方程应用题归纳

  初一的方程应用题是不少同学的难题,那么怎么样才能学好初一的方程应用题呢?以下是学习啦小编分享给大家的初一数学上册方程应用题,希望可以帮到你!

  初一数学上册方程应用题

  知识点1:市场经济、打折销售问题

  (1)商品利润=商品售价-商品成本价 (2)商品利润率= ×100%

  (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量

  (5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)

  1.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )

  A.45% ×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50

  C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50

  2. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

  3. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

  4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

  知识点2: 方案选择问题

  1. 某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后

  销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

  方案一:将蔬菜全部进行粗加工.

  方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售.

  方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

  你认为哪种方案获利最多 ?为什么?

  2.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后

  每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4

  元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2

  元.

  (1)写出y1,y2与x之间的函数关系式(即等式).

  (2)一个月内通话多少分钟,两种通话方式的费用相同?

  (3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

  3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.

  (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.新-课- -第-一 -网

  (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

  4.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。

  (1).设照明时间是x小时,请用含x的代 数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)

  (2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。

  5.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超

  过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.7 2元,求a.

  (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?

  知识点3:工程问题

  工作量=工作效率×工作时间 工作效率=工作量÷工作时间

  工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1

  1. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

  2. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

  3. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

  4.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做

  30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

  5.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,

  一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,

  每加工一个乙种零件可获利24元.若此车间一共获 利1440元,求这一天有几个工人加工

  甲种零件.

  知识点4:行程问题

  基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间

  (1)相遇问题 (2)追及问题

  快行距+慢行距=原距 快行距-慢行距=原距

  (3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度

  逆水(风) 速度=静水(风)速度-水流(风)速度

  抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

  1. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。)

  (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?

  (2)两车同时开出,相背而行多少小时后两车相距600公里?

  (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

  (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

  (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

  2. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路程为10千米,求A、B两地之间的路程。

  3.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

  4.已知 甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?

  初一一元一次方程应用题的等量关系

  (1)和、差、倍、分问题。

  此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。

  (2)等积变形问题。

  此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

  ①形状面积变了,周长没变;②原料体积=成品体积。

  (3)调配问题。

  从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化,常见题型有:

  ①既有调入又有调出;

  ②只有调入没有调出,调入部分变化,其余不变;③只有调出没有调入,调出部分变化,其余不变。

  (4)行程问题。

  要掌握行程中的基本关系:路程=速度×时间。

  相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程

  追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

  ① 同时不同地:

  甲的时间=乙的时间

  甲走的路程-乙走的路程=原来甲、乙相距的路程

  ② 同地不同时:

  甲的时间=乙的时间-时间差

  甲的路程=乙的路程

  环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

  船(飞机)航行问题:相对运动的合速度关系是:

  顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

  车上(离)桥问题:

  ①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

  ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长

  ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长

  ④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

  行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

  (5)工程问题。

  其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

  (6)溶液配制问题。

  其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

  (7)利润率问题。

  其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。商品售价=商品标价×折扣率

  (8)银行储蓄问题。

  其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

  (9)数字问题。

  要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

  (10)年龄问题其基本数量关系:

  大小两个年龄差不会变。

  这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

  (11)比例分配问题:

  这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。

  初一数学上册方程解题方法

  一、目标与要求

  1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3.培养学生获取信息,分析问题,处理问题的能力。

  二、重点

  从实际问题中寻找相等关系;

  建立列方程解决实际问题的思想方法,学会合并同类项,会解"ax+bx=c"类型的一元一次方程。

  三、难点

  从实际问题中寻找相等关系;

  分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。

  四、知识框架

  五、知识点、概念总结

  1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

  2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

  3.条件:一元一次方程必须同时满足4个条件:

  (1)它是等式;

  (2)分母中不含有未知数;

  (3)未知数最高次项为1;

  (4)含未知数的项的系数不为0.

  4.等式的性质:

  等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

  等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

  等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

  解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

  5.合并同类项

  (1)依据:乘法分配律

  (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

  (3)合并时次数不变,只是系数相加减。

  6.移项

  (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

  (2)依据:等式的性质

  (3)把方程一边某项移到另一边时,一定要变号。

  7.一元一次方程解法的一般步骤:

  使方程左右两边相等的未知数的值叫做方程的解。

  一般解法:

  (1)去分母:在方程两边都乘以各分母的最小公倍数;

  (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

  (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

  (4)合并同类项:把方程化成ax=b(a≠0)的形式;

  (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

  8.同解方程

  如果两个方程的解相同,那么这两个方程叫做同解方程。

  9.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  10.列一元一次方程解应用题:

  (1)读题分析法:………… 多用于“和,差,倍,分问题”

  仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

  (2)画图分析法: ………… 多用于“行程问题”

  利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

  11.列方程解应用题的常用公式:

  12.做一元一次方程应用题的重要方法:

  (1)认真审题 (审题)

  (2)分析已知和未知量

  (3)找一个合适的等量关系

  (4)设一个恰当的未知数

  (5)列出合理的方程(列式)

  (6)解出方程(解题)

  (7)检验

  (8)写出答案(作答)

  一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题。

猜你喜欢:

1.一元一次方程应用题解析

2.七年级数学一元一次方程方程应用题归类分析

3.七年级数学上应用题精选带答案

4.七年级数学方程应用题大全

5.初一上册数学实际问题与一元一次方程试题

3820635