学习啦 > 学习方法 > 通用学习方法 > 复习方法 > 初一数学上册第一章知识点归纳

初一数学上册第一章知识点归纳

时间: 欣怡1112 分享

初一数学上册第一章知识点归纳

  在初一学习数学,对当天所学过的知识点进行归纳总结很有必要。 以下是学习啦小编分享给大家的初一数学上册第一章知识点,希望可以帮到你!

  初一数学上册第一章知识点

  第一章 有理数

  知识点一 有理数的分类

  有理数的另一种分类(①定义;②符号)

  想一想:①零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?

  ②零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。

  知识点二 数轴

  1.填空

  ① 规定了唯一的原点,正方向和单位长度 (三要素)的直线叫做数轴。

  ② 比-3大的负整数是-2,-1。

  ③与原点的距离为三个单位的点有2个,他们分别表示的有理数是3,-3。

  2.请画一个数轴,并检查它是否具备数轴三要素?

  3.选择题

  ① 在数轴上,原点及原点左边所表示的数是( )

  A整数  B负数  C非负数  D非正数

  ②下列语句中正确的是( )

  A数轴上的点只能表示整数

  B数轴上的点只能表示分数

  C数轴上的点只能表示有理数

  D所有有理数都可以用数轴上的点表示出来

  知识点三 相反数

  相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。

  知识点四 绝对值

  1.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。

  2.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。

  3.比较两个数的大小关系

  数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数,由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

  知识点五 有理数加减法

  1.同号两数相加,取相同的符号,并把绝对值相加。

  绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  2.互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  4.减去一个数,等于加上这个数的相反数。

  知识点六 乘除法法则

  1.两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。

  2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。

  3.两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。

  4.有理数中仍然有:乘积是1的两个数互为 倒数 。

  5.除以一个不等于0的数等于乘以这个数的 倒数 。

  知识点七 乘方

  乘方定义:求n个相同因数的积的运算,叫做乘方。

  在a的n次方中,底数是a,指数是n,幂是乘方的结果;读作:a的n次方 或a 的n次幂。

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

  知识点八 运算律及混合运算

  1.加法交换律:a+b=b+a

  1.加法交换律:a+b=b+a

  2.乘法交换律:a·b=b·a

  3.加法结合律:a+(b+c)=(a+b)+c

  4.乘法结合律:a·(b·c)=(a·b)·c

  5.乘法分配律:a·(b+c)=ab+ac

  6.有理数混合运算顺序:先乘方;再乘除;最后算加减。

  7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行 。

  8.同级运算, 从左到右进行 。

  知识点九 近似数

  1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。

  2.近似数的分类

  (1)具体近似数(如30.2、58.0 …)

  (2)带单位近似数(如2.4万…)

  (3)科学记数法

  3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。

  4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。

  求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。

  例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。

  初一数学上册代数初步知识知识点

  1.代数式:用运算符号"+-×÷……"连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

  2.列代数式的几个注意事项:

  (1)数与字母相乘,或字母与字母相乘通常使用"·"乘,或省略不写;

  (2)数与数相乘,仍应使用"×"乘,不用"·"乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

  (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

  3.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

  有理数负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

  (2)有理数的分类:①②

  (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  (3)相反数的和为0a+b=0a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  (3);;

  (4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.

  初一数学上册整式的加减知识点

  单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  3.多项式:几个单项式的和叫多项式.

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  整式分类为:.

  6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

  7.合并同类项法则:系数相加,字母与字母的指数不变.

  8.去(添)括号法则:去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"-"号,括号里的各项都要变号.

  9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

  10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

猜你喜欢:

1.初一数学第1章有理数知识点总结

2.初一数学知识点整理

3.初一数学必考知识点

4.初一数学第一章知识点总结大全

5.初一数学上册知识点汇总整理

3820616