初一数学人教版知识点归纳
初一数学人教版知识点归纳
同学们跟上刚上初中,对于初中的学习还不太适应,所以数学知识点学得不是很好,为了帮助大家更好的学习数学,以下是学习啦小编分享给大家的初一数学人教版知识点归纳,希望可以帮到你!
初一数学第一章知识点归纳
有理数
1.1正数和负数
以前学过的0以外的数前面加上负号“-”的书叫做负数.
以前学过的0以外的数叫做正数.
数0既不是正数也不是负数,0是正数与负数的分界.
在同一个问题中,分别用正数和负数表示的量具有相反的意义
1.2有理数
1.2.1有理数
正整数、0、负整数统称整数,正分数和负分数统称分数.
整数和分数统称有理数.
1.2.2数轴
规定了原点、正方向、单位长度的直线叫做数轴.
数轴的作用:所有的有理数都可以用数轴上的点来表达.
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可.
⑵同一根数轴,单位长度不能改变.
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.
1.2.3相反数
只有符号不同的两个数叫做互为相反数.
数轴上表示相反数的两个点关于原点对称.
在任意一个数前面添上“-”号,新的数就表示原数的相反数.
1.2.4绝对值
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值.
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数.
⑵两个负数,绝对值大的反而小.
1.3有理数的加减法
1.3.1有理数的加法
有理数的加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
⑶一个数同0相加,仍得这个数.
两个数相加,交换加数的位置,和不变.
加法交换律:a+b=b+a
三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变.
加法结合律:(a+b)+c=a+(b+c)
1.3.2有理数的减法
有理数的减法可以转化为加法来进行.
有理数减法法则:
减去一个数,等于加这个数的相反数.
a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数同0相乘,都得0.
乘积是1的两个数互为倒数.
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.
两个数相乘,交换因数的位置,积相等.
ab=ba
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
(ab)c=a(bc)
一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
a(b+c)=ab+ac
数字与字母相乘的书写规范:
⑴数字与字母相乘,乘号要省略,或用“”
⑵数字与字母相乘,当系数是1或-1时,1要省略不写.
⑶带分数与字母相乘,带分数应当化成假分数.
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数.
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即
ax+bx=(a+b)x
上式中x是字母因数,a与b分别是ax与bx这两项的系数.
去括号法则:
括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号.
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号.
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.
1.4.2有理数的除法
有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数.
a÷b=a• (b≠0)
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.
1.5有理数的乘方
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.
负数的奇次幂是负数,负数的偶次幂是正数.
正数的任何次幂都是正数,0的任何正整数次幂都是0.
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法.
用科学记数法表示一个n位整数,其中10的指数是n-1.
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数.
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位.
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字.
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字.
初一数学第二章知识点归纳
一元一次方程
2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程.
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程.
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法.
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
2.2从古老的代数书说起——一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项.
2.3从“买布问题”说起——一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似.
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等.
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘
2.4再探实际问题与一元一次方程
初一数学第三章知识点归纳
图形认识初步
3.1多姿多彩的图形
现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形.
3.1.1立体图形与平面图形
长方体、正方体、球、圆柱、圆锥等都是立体图形.此外棱柱、棱锥也是常见的立体图形.
长方形、正方形、三角形、圆等都是平面图形.
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形.
3.1.2点、线、面、体
几何体也简称体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.
包围着体的是面.面有平的面和曲的面两种.
面和面相交的地方形成线.
线和线相交的地方是点.
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.
3.2直线、射线、线段
经过两点有一条直线,并且只有一条直线.
两点确定一条直线.
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.类似的还有线段的三等分点、四等分点等.
直线桑一点和它一旁的部分叫做射线.
两点的所有连线中,线段最短.简单说成:两点之间,线段最短.
3.3角的度量
角也是一种基本的几何图形.
度、分、秒是常用的角的度量单位.
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1.
3.4角的比较与运算
3.4.1角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似的,还有叫的三等分线.
3.4.2余角和补角
如果两个角的和等于90(直角),就说这两个角互为余角.
如果两个角的和等于180(平角),就说这两个角互为补角.
等角的补角相等.
等角的余角相等.
本章知识结构图
猜你喜欢: