初三数学上册知识点归纳北师版
初三数学上册知识点归纳北师版
知道初三数学难度大,进度快,如何学好初三数学,是摆在即将升入新初三学生面前的一个难题。为了帮助同学们更好的复习数学,以下是学习啦小编分享给大家的初三数学上册知识点归纳,希望可以帮到你!
初三数学上册知识点归纳
第一章 特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别方法:
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半
第二章 一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法 <即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
①在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
②处理问题的过程可以进一步概括为:
第三章 图形的相似
1、成比例线段
①线段的比
如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成
四条线段a、b、c、d中,如果a与b的比等于c与d的比,即
那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
②注意点:
a:b=k,说明a是b的k倍
由于线段 a、b的长度都是正数,所以k是正数
比与所选线段的长度单位无关,求出时两条线段的长度单位要一致
除了a=b之外,a:b≠b:a
比例的基本性质:若
则ad=bc; 若ad=bc, 则
2、平行线分线段成比例
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则
3. 黄金分割
如图1,点C把线段AB分成两条线段AC和BC,如果
那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
黄金分割点是最优美、最令人赏心悦目的点.
4.相似多边形
① 含义:
一般地,形状相同的图形称为相似图形.
对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.
②注意点:
在相似多边形中,最为简单的就是相似三角形.
对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
全等三角形是相似三角的特例,这时相似比等于1.
注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
相似三角形周长的比等于相似比.
相似三角形面积的比等于相似比的平方.
相似多边形的周长等于相似比;面积比等于相似比的平方.
5、探索三角形相似的条件
①相似三角形的判定方法:
②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③相似三角形的判定定理的证明
④利用相似三角形测高
⑤相似三角形的性质
⑥图形的位似
第四章 投影与视图
1、三视图
① 主视图——从正面看到的图
左视图——从左面看到的图
俯视图——从上面看到的图
②画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.
③虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.
2、投影
① 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.
②太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
③在同一时刻,物体高度与影子长度成比例.
④物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.
⑤探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称
为中心投影
⑥皮影和手影都是在灯光照射下形成的影子.它们是中心投影。
3、视点、视线、盲区的定义以及在生活中的应用
①眼睛所在的位置称为视点,
②由视点发出的光线称为视线,
③眼睛看不到的地方称为盲区
第五章 反比例函数
1、反比例函数的定义
2、用待定系数法求反比例函数的解析式
由于反比例函数
只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
3、反比例函数的图像及画法
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中
所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:
①列表时选取的数值宜对称选取;
②列表时选取的数值越多,画的图像越精确;
③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;
④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
4、反比例函数的性质
关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:
第六章 概率的进一步认识
用树状图或表格求概率
相关知识点链接:
①频数与频率
频数:在数据统计中,每个对象出现的次数叫做频数,
频率:每个对象出现的次数与总次数的比值为频率。
②概率的意义和大小:
概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。
【知识点1】频率与概率的含义
在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即
把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。
【知识点2】通过实验运用稳定的频率来估计某一时间的概率
在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。
我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。
【知识点3】利用画树状图或列表法求概率(重难点)
初三上册数学几何知识点
扇形周长公式
因为扇形=两条半径+弧长
若半径为R,扇形所对的圆心角为n°,那么扇形周长:
C=2R+nπR÷180
扇形面积公式
在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积
S=nπR^2÷360
▲什么是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什么是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
圆的面积 s = π × r × r
其中,π 是周围率,等于3.14
r 是圆的半径。
圆的周长计算公式为:C=2πR 。C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方) 。S代表圆的面积,r为圆的半径。
椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
1.有关的计算:
(1)圆的周长C=2πR;(2)弧长L= ;(3)圆的面积S=πR2.
(4)扇形面积S扇形 = ;
(5)弓形面积S弓形 =扇形面积SAOB±ΔAOB的面积.(如图)
2.圆柱与圆锥的侧面展开图:
(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)
(2)圆锥的侧面积:S圆锥侧 = =πrR. (L=2πr,R是圆锥母线长;r是底面半径)
描述定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫圆心。线段OA叫做半径。
集合定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2、圆的表示方法:以O为圆心的圆记做⊙O,读作圆O。
3、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
4、半径:圆心与圆上任意一点所连的线段叫半径。直径:经过圆心的弦叫直径。
5、圆心角:顶点在圆心上的角叫圆心角。
6、圆周角:顶点在圆上,并且两边都与圆相交的角叫圆周角。
7、弦心距:圆心到弦的垂线段的长。
初三数学复习方法
课前要“预、做、复”
每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。
每节新内容学完后,要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
课上要“听、记、练”
首先, 做好课前的准备。充分做好课前的准备工作是听好课基础。一般情况下,应做好三个方面的准备:
第一,知识准备。每一门学科,都有其严密的知识体系,尤其是数学,其严密性更强,它好像一条锁链, 一环套一环,环环紧扣,前面的知识没有掌握好,后面的知识就难以理解。所以上课前要复习旧课并预习新课,了解新旧知识的联系, 明确新课的学习要求。如果旧的知识接不上,就要想办法补上。
第二,物质准备。课前要准备好课本、文具在内的课堂上必需学习用品,如:课堂笔记本,草稿本,三角板,圆规,量角器等。
第三,精神准备。提前入座,稳定情绪,并可利用这短暂的时间作知识回顾,上一节学了什么?这堂课将学什么? 这样有助于一上课就进入“角色”。
其次,听讲全神贯注。部分同学为什么学习成绩上不去? 为什么课后做作业感到费力? 其中一个重要的原因就是上课不专心听讲。有的同学上课静不下来,注意力容易分散,这就需要专门的训练。
再次,要主动获取知识。主动听课是指积极配合老师的每一个教学环节,主动思考。例如,老师在黑板上写出一道例题,有些同学等待教师讲解,而有些同学则不然,他立即开动脑筋, 抢在老师讲解前分析问题的条件和结论,并考虑解题思路,久而久之,就能提高自己的解题能力和思维能力。
最后,还要做好课堂笔记。课堂上以听为主,以记为辅。记笔记求精求快,而不求多。课堂上主要记教材以外的补充内容、学习中的难点、老师的归纳小结及解题的方法技巧。课后再对笔记进行适当整理;就能将课堂所获得的知识纳入自己的知识仓库。
课后要“思、问、集”
课后作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想。如:方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用,做到绝不出现第二次类似错误。
猜你喜欢: