学习啦 > 学习方法 > 通用学习方法 > 复习方法 > 初三年级下册数学知识点归纳有哪些

初三年级下册数学知识点归纳有哪些

时间: 欣怡1112 分享

初三年级下册数学知识点归纳有哪些

  面对数学这门难学的科目应该 怎么复习呢?初三年级下册数学知识点归纳有哪些呢?以下是学习啦小编分享给大家的初三年级下册数学知识点,希望可以帮到你!

  初三年级下册数学知识点

  一元二次方程的定义:

  定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

  一元二次方程的一般形式:

  a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

  一元二次方程的特点

  (1)该方程为整式方程。

  (2)该方程有且只含有一个未知数。

  (3)该方程中未知数的最高次数是2。

  一元二次方程常见考法

  (1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;

  (2)在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);

  (3)列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式

  初三数学圆知识点总结

  一、圆的相关概念

  1、圆的定义

  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

  2、直线圆的与置位关系

  1.线直与圆有唯公一共时,点做直叫与圆线切

  2.三角的外形圆接的圆叫做三心形角外心

  3.弦切角于所等夹弧所对的的圆心角

  4.三角的内形圆切的圆叫做三心形角内心

  5.垂于直径半直线必为圆的的切线

  6.过径半外的点并且垂直端于半的径直线是圆切线

  7.垂于直径半直线是圆的的切线

  8.圆切线垂的直过切于点半径

  3、圆的几何表示

  以点O为圆心的圆记作“⊙O”,读作“圆O”

  二、垂径定理及其推论

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

  推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  垂径定理及其推论可概括为:

  过圆心

  垂直于弦

  直径 平分弦 知二推三

  平分弦所对的优弧

  平分弦所对的劣弧

  三、弦、弧等与圆有关的定义

  1、弦

  连接圆上任意两点的线段叫做弦。(如图中的AB)

  2、直径

  经过圆心的弦叫做直径。(如途中的CD)

  直径等于半径的2倍。

  3、半圆

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

  4、弧、优弧、劣弧

  圆上任意两点间的部分叫做圆弧,简称弧。

  弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。

  大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

  四、圆的对称性

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

  五、弧、弦、弦心距、圆心角之间的关系定理

  1、圆心角

  顶点在圆心的角叫做圆心角。

  2、弦心距

  从圆心到弦的距离叫做弦心距。

  3、弧、弦、弦心距、圆心角之间的关系定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

  推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

  六、圆周角定理及其推论

  1、圆周角

  顶点在圆上,并且两边都和圆相交的角叫做圆周角。

  2、圆周角定理

  一条弧所对的圆周角等于它所对的圆心角的一半。

  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  七、点和圆的位置关系

  设⊙O的半径是r,点P到圆心O的距离为d,则有:

  d

  d=r 点P在⊙O上;

  d>r 点P在⊙O外。

  八、过三点的圆

  1、过三点的圆

  不在同一直线上的三个点确定一个圆。

  2、三角形的外接圆

  经过三角形的三个顶点的圆叫做三角形的外接圆。

  3、三角形的外心

  三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

  4、圆内接四边形性质(四点共圆的判定条件)

  圆内接四边形对角互补。

  九、反证法

  先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。

  十、直线与圆的位置关系

  直线和圆有三种位置关系,具体如下:

  (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

  (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

  (3)相离:直线和圆没有公共点时,叫做直线和圆相离。

  如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

  直线l与⊙O相交 d

  直线l与⊙O相切 d=r;

  直线l与⊙O相离 d>r;

  十一、切线的判定和性质

  1、切线的判定定理

  经过半径的外端并且垂直于这条半径的直线是圆的切线。

  2、切线的性质定理

  圆的切线垂直于经过切点的半径。

  十二、切线长定理

  1、切线长

  在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

  2、切线长定理

  从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  十三、圆和圆的位置关系

  1、圆和圆的位置关系

  如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

  如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

  如果两个圆有两个公共点,那么就说这两个圆相交。

  2、圆心距

  两圆圆心的距离叫做两圆的圆心距。

  3、圆和圆位置关系的性质与判定

  设两圆的半径分别为R和r,圆心距为d,那么

  两圆外离 d>R+r

  两圆外切 d=R+r

  两圆相交 R-r

  两圆内切 d=R-r(R>r)

  两圆内含 dr)

  4、两圆相切、相交的重要性质

  如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

  初三数学复习技巧

  注重课本知识

  全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。

  这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。

  另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。

  注重课堂学习

  在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。

  夯实基础知识

  在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

  有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。

  注意知识的迁移

  课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。

猜你喜欢:

1.九年级下数学教学工作总结

2.初三数学重点知识点归纳

3.初三物理重点知识归纳总结

4.9年级数学下册圆的知识点

5.初三的数学知识点归纳总结

3807967