初二上册数学知识点归纳总结
临近期末,初二的同学应该怎么复习数学才好呢?小编就整理好重点的复习知识点,以备考试。下面是学习啦小编分享给大家的初二上册数学知识点,希望大家喜欢!
初二上册数学知识点
轴对称
一、定义
1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点
1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
等腰三角形两腰上的高或中线相等。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。
8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]
9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。
11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
三、注意
1、(x,y)关于原点对称(-x。-y)。关于x轴对称(x,-y)。关于y轴对称(-x,y)
2、用坐标表示轴对称。
初二上册数学学习方法
1、积极培养自己对新添学科的学习兴趣。
平面几何是逻辑推理、形象思维、抽象思维的训练,平面几何学习的好坏,直接影响你的思维发展,影响你顺利地完成第五个思维发展飞跃。理化学科是你将来从事理工科的基础,语文的快速阅读和写作训练也在为你今后的发展奠定基础。切记勿偏科,初中阶段的所有学科都是你和谐完美发展的第一块基石。
2、坚持预习习惯
预习是通过阅读对将要学习的内容预知,它有几方面的益处。①可以帮助我们明确将要学习的目标,以便于我们带着问题上课,从而提高课堂效率。②预习是自主学习的一种方式,通过预习可以提高我们的阅读理解能力,阅读理解能力是一个人终身学习不可或缺的素养。
3、用好“读、听、议、练、评”五字学习法
掌握学习主动权。读:读书预习;听:听课;议:讲议讨论;练:复读练习,形成技能;评:自我评价掌握学习内容的水平。
4、在评价中学习,在评价中达标:“在评价中学习”是指给自己提出明确的学习目标
在目标的指导和鞭策下学习。“在评价中达标”是指只有进入“自我评价状态的学习”,才能有效地达到学习目标,强烈的自我追逐学习目标,才能高质量、高水平的达到目标。
5、听课要诀:
①在自学预习的基础上听;
‚手脑并用,勤于实践议练,勤于笔记,养成笔记的习惯;
勇于发言,发问,暴露自己的疑点、弱点;
④把握重点和难点。对“重点”要“练而不厌”,对“难点”要锲而不舍;
⑤形散神不散。课堂上,教师的读、讲、议、练、评活动安排从形式上可能有些“散”,你要积极参与配合,做到45分钟形散神不散;
⑥重视每节课的归纳小结,把感性认识上升为理性认识。就数学而言要学会归纳知识结构、题型、数学思想和方法。
6、重视知识、题型积累,更重视思维训练和能力发展
在听懂双基知识点的同时,着力弄清思路和方法;经常进行一题多解、一题多变的练习。只看书不做题不行,只埋头做题不总结积累也不行。大家对课本知识既要能钻进去,又要能跳出来,结合自身特点,找到最佳学习方法;有目的地提高自己的动手能力。有目的地提高自己的特异思维能力,不要只满足于教师讲的,书上写的解法和证法。
初二上册数学学习建议
1、预习的方法
预习是上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。
(1)看书要动笔。(不动笔墨不读书)
①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;
②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。
③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。
④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。
(2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。
2、听课的方法
听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。
(1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”
(2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。
(3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。
3、复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。
(1)复习笔记和卷纸。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看---这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。
(2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。
(3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。
4、做作业的方法
数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,发现存在的问题,困难。当做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
(1)先复习后做作业。在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
(2)必须独立完成。培养良好的习惯,在作业中要做得整齐、清洁,要注重解题格式。书写规范。作业必须独立完成。高质量的完成作业可以培养一种独立思考和解题正确的责任感。
(3)短时高效。规定一个具体时间,在此期间什么除了写作业,其他都不允许干。思维松散、精力不集中的作业习惯,对提高数学能力是有害而无益的。
(4)认真核查。准备一个红笔,正确的打对号,不一样的再做一遍,检查是自己做的对还是答案对,一些不会的题或叫不准的题问老师、问同学。
猜你喜欢: