八年级上册数学第二章复习题有哪些
数学一直是同学们公认的难题,想要学好数学不下功夫是不行的。以下是学习啦小编分享给大家的八年级上册数学第二章复习题,希望可以帮到你!
八年级上册数学第二章复习题
一.选择题(共12小题,每题4分)
1.(2003•烟台)若3x﹣2y=0,则 等于( )
A. B. C. ﹣ D. 或无意义
2.(2009•上海)用换元法解分式方程 ﹣ +1=0时,如果设 =y,将原方程化为关于y的整式方程,那么这个整式方程是( )
A.y2+y﹣3=0 B. y2﹣3y+1=0 C. 3y2﹣y+1=0 D. 3y2﹣y﹣1=0
3.(2010•聊城)使分式 无意义的x的值是( )
A.x=﹣ B. x= C. x≠﹣ D. x≠
4.(2011•连云港)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )
A. B. C. D.
5.(2014•永州)下列运算正确的是( )
A.a2•a3=a6 B. ﹣2(a﹣b)=﹣2a﹣2b C. 2x2+3x2=5x4 D. (﹣ )﹣2=4
6.(2014•海南)下列式子从左到右变形是因式分解的是( )
A.a2+4a﹣21=a(a+4)﹣21 B. a2+4a﹣21=(a﹣3)(a+7)
C.(a﹣3)(a+7)=a2+4a﹣21 D. a2+4a﹣21=(a+2)2﹣25
7.(2014•龙东地区)已知关于x的分式方程 + =1的解是非负数,则m的取值范围是( )
A.m>2 B. m≥2 C. m≥2且m≠3 D. m>2且m≠3
8.(2014•来宾)将分式方程 = 去分母后得到的整式方程,正确的是( )
A.x﹣2=2x B. x2﹣2x=2x C. x﹣2=x D. x=2x﹣4
9.(2014•安徽)x2•x3=( )
A.x5 B. x6 C. x8 D. x9
10.(2006•绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )
A.2对 B. 3对 C. 4对 D. 6对
11.(2013•黑龙江)已知关于x的分式方程 =1的解是非正数,则a的取值范围是( )
A.a≤﹣1 B. a≤﹣1且a≠﹣2 C. a≤1且a≠﹣2 D. a≤1
12.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于( )
A.10cm B. 8cm C. 5cm D. 2.5cm
二.填空题(共6小题,每题4分)
13.(2003•宜昌)三角形按边的相等关系分类如下:三角形 ( )内可填入的是 _________ .
14.(2013•株洲)多项式x2+mx+5因式分解得(x+5)(x+n),则m= _________ ,n= _________ .
15.(2014•西宁)计算:a2•a3= _________ .
16.(2014•成都)已知关于x的分式方程 ﹣ =1的解为负数,则k的取值范围是 _________ .
17.(2014•南充)分式方程 =0的解是 _________
18.(2014•沙湾区模拟)如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中结论正确的是 _________ .
三.解答题(共8小题。19-20每题7分。21-24每题10分。25-26,每题12分)
19.(2013•无锡)计算:
(1) ﹣(﹣2)2+(﹣0.1)0;
(2)(x+1)2﹣(x+2)(x﹣2).
20.(2008•安顺)若关于x的分式方程 的解是正数,求a的取值范围.
21.(2010•佛山)新知识一般有两类:第一类是不依赖于其它知识的新知识,如“数”,“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系,拓拓广等方式产生的知识,大多数知识是这样的知识.
(1)多项式乘以多项式的法则,是第几类知识?
(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)
(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何或得的?(用(a+b)(c+d)来说明)
22.(2014•镇江)(1)解方程: ﹣ =0;
(2)解不等式:2+ ≤x,并将它的解集在数轴上表示出来.
23.(2014•梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
24.(2007•泉州)已知正n边形的周长为60,边长为a
(1)当n=3时,请直接写出a的值;
(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.
25.(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
26.(2011•连云港)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;
…
现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)
问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知 = S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究 与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求 .
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.
八年级上册数学第二章复习资料
一、实数的概念及分类
1、实数的分类
一是分类是:正数、负数、0;
另一种分类是:有理数、无理数
将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o等
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1.零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
八年级上册数学复习提纲
第一章 勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。满足 的三个正整数称为勾股数。
第二章 实数
1.平方根和算术平方根的概念及其性质:
(1)概念:如果 ,那么 是 的平方根,记作: ;其中 叫做 的算术平方根。
(2)性质:①当 ≥0时, ≥0;当 <0时, 无意义;② = ;③ 。
2.立方根的概念及其性质:
(1)概念:若 ,那么 是 的立方根,记作: ;
(2)性质:① ;② ;③ =
3.实数的概念及其分类:
(1)概念:实数是有理数和无理数的统称;
(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
5.算术平方根的运算律: ( ≥0, ≥0); ( ≥0, >0)。
第三章 图形的平移与旋转
1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
猜你喜欢: