学习啦 > 学习方法 > 通用学习方法 > 复习方法 > 浙教版九年级数学复习资料有哪些

浙教版九年级数学复习资料有哪些

时间: 欣怡1112 分享

浙教版九年级数学复习资料有哪些

  数学是中考和高考必考科目,也是分值占比较高的科目,所以学好数学很必要。下面是学习啦小编分享给大家的九年级数学复习资料,希望大家喜欢!

  九年级数学复习资料一

  I.二次根式的定义和概念:

  1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0

  2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。

  II.二次根式√ā的简单性质和几何意义

  1)a≥0 ; √ā≥0 [ 双重非负性 ]

  2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]

  3) √(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。

  III.二次根式的性质和最简二次根式1)二次根式√ā的化简a(a≥0)√ā=|a|={   -a(a<0)

  2)积的平方根与商的平方根√ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

  3)最简二次根式

  条件:

  (1)被开方数的因数是整数或字母,因式是整式;

  (2)被开方数中不含有可化为平方数或平方式的因数或因式。

  如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等;

  含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等

  IV.二次根式的乘法和除法

  1 运算法则

  √a·√b=√ab(a≥0,b≥0)

  √a/b=√a /√b(a≥0,b>0)

  二数二次根之积,等于二数之积的二次根。

  2 共轭因式

  如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。

  V.二次根式的加法和减法

  1 同类二次根式

  一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

  2 合并同类二次根式

  把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3二次根式

  加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并

  Ⅵ.二次根式的混合运算

  1确定运算顺序

  2灵活运用运算定律

  3正确使用乘法公式

  4大多数分母有理化要及时

  5在有些简便运算中也许可以约分,不要盲目有理化

  VII.分母有理化分母有理化有两种方法

  I.分母是单项式

  如:√a/√b=√a×√b/√b×√b=√ab/b

  II.分母是多项式要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

  II.分母是多项式

  要利用平方差公式

  如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

  有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。

  【注】“大”减“小”是指绝对值的大小。

  九年级数学复习资料二

  有理数的减法运算

  减正等于加负,减负等于加正。

  有理数的乘法运算符号法则同号得正异号负,一项为零积是零。

  合并同类项

  说起合并同类项,法则千万不能忘。

  只求系数代数和,字母指数留原样。

  去、添括号法则

  去括号或添括号,关键要看连接号。

  扩号前面是正号,去添括号不变号。

  括号前面是负号,去添括号都变号。

  解方程

  已知未知闹分离,分离要靠移完成。

  移加变减减变加,移乘变除除变乘。

  平方差公式

  两数和乘两数差,等于两数平方差。

  积化和差变两项,完全平方不是它。

  完全平方公式

  二数和或差平方,展开式它共三项。

  首平方与末平方,首末二倍中间放。

  和的平方加联结,先减后加差平方。

  完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先减后加差平方。

  解一元一次方程

  先去分母再括号,移项变号要记牢。

  同类各项去合并,系数化“1”还没好。

  求得未知须检验,回代值等才算了。

  解一元一次方程

  先去分母再括号,移项合并同类项。

  系数化1还没好,准确无误不白忙。

  因式分解与乘法

  和差化积是乘法,乘法本身是运算。

  积化和差是分解,因式分解非运算。

  九年级数学复习常见误区

  1误区一:多做题目总会遇到考试题——题海战术

  其实不然。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。

  对策:

  对策一:让自己花点时间整理最近解题的题型和思路。

  对策二:这道题和以前的某一题差不多吗?

  对策三:此题的知识点我是否熟悉了?

  对策四:最近有哪几题的图形相近?能否归类?

  对策五:这一题的解题思想在以前题目中也用到了,让我把它们找出来!

  2误区二:钻研难题基础题就简单了

  也不对,其实基础的才是最重要的。有的同学喜欢挑战有难度的数学题,能让他从思维中得到快乐,但数学分数却一直不高。其实这在一定程度上反映出我们数学学习中的浮躁状况,老师爱讲难题、综合题,学生想做综合题、难题,在忽视基础的同时,迷失了数学学习的方向。

  对策

  对策一:告诉自己数学思维不等于复杂思维,数学的美往往体现在一些小题目中。

  对策二:“简约而不简单”在平常题中体会数学思维的乐趣。

  对策三:“一滴朝露也能折射出太阳的光辉。”让我从基础题中找综合题的影子。

  对策四:这道题真的简单吗?

  对策五:我是一名优秀的学生,我能在平凡中体现出我的优秀。

  3误区三:课上听得懂,课后不会解题

  这是很多人的误区之一。学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一回事,而达到能应用知识解决问题是另一回事。教师所举例题是范例也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。

  对策

  对策一:自己重做一遍例题。

  对策二:问自己为什么这样思考问题。

  对策三:探索条件、结论换一下行吗?

  对策四:思考有其他结论吗?

  对策五:我能得到什么解题规律?

  4误区四:畏难情绪

  有些学生会认为数学思想深不可测、高不可攀,其实每一道数学题之中都包含着数学思想方法。数学思想方法是指导解题的十分重要的方针,有利于培养学生思维的广阔性、深刻性、灵活性和组织性。

  对策

  对策一:数学思想方法并不神秘,它蕴藏在题目中。

  对策二:了解一些数学思想,找到几道典型题。

  对策三:解题完毕问自己“我运用了什么数学思想方法”?

  对策四:解题前问自己从什么角度去思考。

  对策五:请老师介绍一些数学思想方法。

猜你喜欢:

1.九年级数学复习方法指导

2.初三数学期末总复习的方法

3.九年级数学上期末复习试卷

4.浙教版高一数学知识点

5.初三上册数学课本人教版

3782023