学习啦 > 学习方法 > 通用学习方法 > 复习方法 > 人教版七年级数学上册复习提纲有哪些

人教版七年级数学上册复习提纲有哪些

时间: 欣怡1112 分享

人教版七年级数学上册复习提纲有哪些

  总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法,这样才能有效的学到知识。下面是学习啦小编分享给大家的人教版七年级数学上册复习提纲的资料,希望大家喜欢!

  人教版七年级数学上册复习提纲一

  第一章 有理数

  1.1 正数与负数

  ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

  ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

  ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

  注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

  1.2 有理数

  1.有理数(1)整数:正整数、0、负整数统称整数(integer),

  (2)分数;正分数和负分数统称分数(fraction)。

  (3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。

  2.数轴

  (1)定义 :通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  (2)数轴三要素:原点、正方向、单位长度。

  (3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。

  (4)数轴上的点和有理数的关系:

  所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。从几何意义上讲,数的绝对值是两点间的距离。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  ①有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  加法的交换律和结合律

  ②有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  ①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。乘法交换律/结合律/分配律

  ②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。

  0除以任何一个不等于0的数,都得0。

  1.5 有理数的乘方

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

  人教版七年级数学上册复习提纲二

  第二章 整式的加减

  2.1 整式

  单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

  单项式的系数:是指单项式中的数字因数;

  单项数的次数:是指单项式中所有字母的指数的和.

  多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里 是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包包括它前面的性质符号.

  它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  单项式和多项式统称为整式。

  2.2整式的加减

  同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

  合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  合并同类项法则:

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

  如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

  整式加减的一般步骤:

  1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项

  2.3整式的乘法法则 :

  单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;

  单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

  多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  2.4整式的除法法则

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

  人教版七年级数学上册复习提纲三

  一、正数和负数

  1、以前学过的0以外的数前面加上负号-的数叫做负数。

  2、以前学过的0以外的数叫做正数。

  3、零既不是正数也不是负数,零是正数与负数的分界。

  4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。

  二、有理数

  1、正整数、0、负整数统称整数,正分数和负分数统称分数。

  2、整数和分数统称有理数。

  3、把一个数放在一起,就组成一个数的集合,简称数集。

  三、数轴

  1、规定了原点、正方向、单位长度的直线叫做数轴。

  2、数轴的作用:所有的有理数都可以用数轴上的点来表达。

  3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。

  (2)正数都大于零,负数都小于零,正数大于负数。

  四、相反数

  1、只有符号不同的两个数叫做互为相反数。

  2、数轴上表示相反数的两个点关于原点对称。

  3、零的相反数是零。

  五、绝对值

  1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  六、有理数的大小比较

  1、正数大于0,0大于负数,正数大于负数。

  2、两个负数,绝对值大的反而小。

  七、有理数的加法

  1、有理数的加法法则

  (1)号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

  (3)互为相反数的两个数相加得零。

  (4)一个数同零相加,仍得这个数。

  2、有理数加法的运算律

  (1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a

  (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

  八、有理数的减法

  1、有理数减法法则

  减去一个数,等于加这个数的相反数。即a-b=a+(-b)

  九、有理数的乘法

  1、有理数的乘法法则

  (1)两数相乘,同号得正,异号得负,并把绝对值相乘。

  (2)任何数同0相乘,都得0。

  (3)乘积是1的两个数互为倒数。

  (4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

  (5)几个数相乘,有一个因数为零,积就为零。

  2、有理数的乘法的运算律

  (1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba

  (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)

  (3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac

  十、有理数的除法

  1、有理数除法法则

  (1)除以一个不等于0的数,等于乘这个数的倒数。

  (2)零不能作除数。

  (3)两数相除,同号得正,异号得负,并把绝对值相除。

  (4)0除以任何一个不等于0的数,都得0。

  十一、有理数的乘方

  1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  2、负数的奇次幂是负数,负数的偶次幂是正数。

  3、正数的任何次幂都是正数,0的任何正整数次幂都是0。

  十二、有理数混合运算的运算顺序

  1、先算乘方,再算乘除,最后算加减;

  2、同极运算,从左到右进行;

  3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

  十三、科学记数法

  1、把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  2、用科学记数法表示一个n位整数,其中10的指数是n-1。

  十四、近似数和有效数字

  1、接近实际数目,但与实际数目还有差别的数叫做近似数。

  2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

  3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

  4、对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。

猜你喜欢:

1.七年级上册数学知识点总结

2.初一上册数学知识点手抄报

3.人教版七年级地理复习资料有哪些

4.人教版七年级上地理期末总复习资料有哪些

5.七年级数学复习计划大全

3727952