人教版九年级上册数学章节复习
人教版九年级上册数学章节复习
初中的数学渐渐地加深难度,很多同学学习起来很吃力,为了让同学们更好的学习数学,下面是学习啦小编分享给大家的九年级上册数学章节复习的资料,希望大家喜欢!
九年级上册数学章节复习一
一.知识框架
二.知识概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意
意两点的线段叫做弦。经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r
10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
13.有关定理:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
14.圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180
15.扇形面积S=π(R^2-r^2) 5.圆锥侧面积S=πrl
九年级上册数学章节复习二
图形题
【三角形中位线的定理】
三角形的中位线平行于三角形的第三边,并且等于第三边的一半.
【平行四边形的性质】
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分.
【矩形的性质】
①矩形具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等.
正方形的判定与性质
1.判定方法:
(1)邻边相等的矩形;
(2)邻边垂直的菱形;
(3)对角线垂直的矩形;
(4)对角线相等的菱形;
2.性质:
(1)边:四边相等,对边平行;
(2)角:四个角都相等都是直角,邻角互补;
(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理
【等腰三角形的判定方法】
1.有两条边相等的三角形是等腰三角形。
2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中最大数据与最小数据的差叫做极差,即极差=最大值-最小值。
计算器——求标准差与方差的一般步骤:
1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。
2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5.标准差的平方就是方差。
九年级上册数学章节复习三
证明(二)
重点 三角形相关性质及其证明; 垂直平分线定理的证明和应用,尺规作图;能够角平分线的性质定理、
判定定理及相关结论的证明,利用尺规作已知角的平分线
难点 三角形相关性质及其证明; 垂直平分线定理的证明和应用,尺规作图;能够角平分线的性质定理、
判定定理及相关结论的证明
知识点
1、三角形相关定理
推论 两角及其中一角的对边对应相等的两个三角形全等.(AAS)
定理 等腰三角形的两个底角相等.(等边对等角)
推论 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(三线合一)
定理 有两个角相等的三角形是等腰三角形.(等角对等边)
定理 有一个角等于60º的等腰三角形是等边三角形.
2、直角三角形
定理 在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半.
(等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直
角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半.)
定理 直角三角形两条直角边的平方和等于斜边的平方.(勾股定理)
定理 如果三角形两边的平方和等于第三方的平方,那么这个三角形是直角三角形.
互逆命题 逆命题 互逆定理 逆定理
定理 斜边和一条直角边对应的两个直角三角形全等.(HL)
3、线段的垂直平分线<直线与射线有垂线,但无垂直平分线>
定理 线段垂直平分线上的点到这条线段两个端点的距离相等。
定理 到一条线段两端点距离相等的点,在这条线段的垂直平分线上。(线段垂直平分线逆定理)
定理 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(如图1所示,AO=BO=CO)
C C
E 图1 图2
4、角平分线
定理 角平分线上的点到这个角的两边的距离相等。(角平分线是到角的两边距离相等的所有点的集合。) 定理 在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。(角平分线逆定理)
定理 三角形的三条角平分线相交于一点,并且这个点到三边距离相等.(交点为三角形的内心.如图2,OD=OE=OF)
猜你喜欢: