有哪些人教版高二数学复习提纲资料
有哪些人教版高二数学复习提纲资料
数学历来都是学科里面的大科,是考试中必不可少的科目,所占分值也非常高,所以同学们学好数学是非常必要的,那么有哪些人教版高二数学复习提纲资料?下面是学习啦小编分享给大家的人教版高二数学复习提纲资料的资料,希望大家喜欢!
人教版高二数学复习提纲资料一
高二数学必修4第三单元重要知识点
1.正弦、余弦公式的逆向思维
对于形如cos(α-β)cos(β)-sin(α-β)sin(β)这样的形式,运用逆向思维,化解为:
cos(α-β)cos(β)-sin(α-β)sin(β)=cos[(α-β)+β]=cos(α)
2.正切公式的逆向思维。
比如,由tαn(α+β)=[tαn(α)+tαn(β)] / [1-tαn(α)tαn(β)]
可得:
tαn(α)+tαn(β)=tαn(α+β)[1-tαn(α)tαn(β)]
[1-tαn(α)tαn(β)]=[tαn(α)+tαn(β)]/ tαn(α+β)
tαn(α)tαn(β)tαn(α+β)=tαn(α+β)-tαn(α)-tαn(β)
3.二倍角公式的灵活转化
比如:1+sin2α=sin2(α)+cos2(α)+2sin(α)cos(α)
=[sin(α)+cos(α)]2
cos(2α)=2cos2(α)-1=1-2sin2(α)=cos2(α)-sin2(α)=[cos(α)+sin(α)][cos(α)-sin(α)]
cos2(α)=[1+cos(2α)]/2
sin2(α)=[1-cos(2α)]/2
1+cos(α)=2cos2(α/2)
1-cos(α)=2sin2(α/2)
sin(2α)/2sin(α)=2sin(α)cos(α)/2sin(α)=cos(α)
sin(2α)/2cos(α)=2sin(α)cos(α)/2cos(α)=sin(α)
4.两角和差正弦、余弦公式的相加减、相比。
比如:
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)……1
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)……2
1式+2式,得到
sin(α+β)+sin(α-β)=2sin(α)cos(β)
1式-2式,得到
sin(α+β)-sin(α-β)=2cos(α)sin(β)
1式比2式,得到
sin(α+β)/sin(α-β)=[sin(α)cos(β)+cos(α)sin(β)]/ [sin(α)cos(β)-cos(α)sin(β)]
=[tαn(α)+tαn(β)] / [tαn(α)-tαn(β)]
我们来看两道例题,增加印象。
1.已知cos(α)=1/7,cos(α-β)=13/14,且0<β<α<π/2,求β
本题中,α-β∈(0,π/2)
sin(α)=4√3/7 sin(α-β)=3√3/14
cos(β)=cos[α-(α-β)]=cos(α)cos(α-β)+sin(α)sin(α-β)
=1/2
β=π/3
2.已知3sin2(α)+2sin2(β)=1,3sin(2α)-2sin(2β)=0,且α,β都是锐角。求α+2β
由3sin2(α)+2sin2(β)=1得到:
1-2sin2(β)=cos(2β)=3sin2(α)
由3sin(2α)-2sin(2β)=0得到:
sin(2β)=3sin(2α)/2
cos(α+2β)=cos(α)cos(2β)-sin(α)sin(2β)
=cos(α)3sin2(α)-sin(α)3sin(2α)/2
=3sin2(α)cos(α)-3cos(α)sin2(α)
=0
加之0<α+2β<270o
α+2β=90o
人教版高二数学复习提纲资料二
高二数学等比数列知识点梳理
一般地,如果一个数列[1]从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。在运用等比数列[2]的前n和时,一定要注意讨论公比q是否为1。
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,一个正项等比数列与等差数列是“同构”的。
等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。
(1)无穷递缩等比数列各项和公式:
无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。
(2)由等比数列组成的新的等比数列的公比:
{an}是公比为q的等比数列
1、若A=a1+a2+……+an
等比数列公式
B=an+1+……+a2n
C=a2n+1+……a3n
则,A、B、C构成新的等比数列,公比Q=q^n
2、若A=a1+a4+a7+……+a3n-2
B=a2+a5+a8+……+a3n-1
C=a3+a6+a9+……+a3n
则,A、B、C构成新的等比数列,公比Q=q
2公式性质
(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列。
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。
(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。
注意:上述公式中A^n表示A的n次方。
(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
3求通项法
1、待定系数法:已知a(n+1)=2an+3,a1=1,求an构造等比数列a(n+1)+x=2(an+x)
a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3
所以(a(n+1)+3)/(an+3)=2
∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3
2、定义法:已知Sn=a·2^n+b,,求an的通项公式。
∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b
∴an=Sn-Sn-1=a·2^n-1
人教版高二数学复习提纲资料三
一、集合、简易逻辑(14课时,8个)
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
十一、概率(12课时,5个)
1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。
十五、复数(4课时,4个)
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二二项方程的解法。
猜你喜欢: