图像处理基本知识图像处理的方法
图像处理基本知识图像处理的方法
图像处理又称为影像处理,是用计算机对图像进行达到所需结果的技术。那么你对图像处理了解多少呢?以下是由学习啦小编整理关于图像处理基本知识的内容,希望大家喜欢!
图像处理的介绍
所谓数字图像处理就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。 21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。
数字图像处理即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
另一方面,通过数字图像处理中的模式识别技术,可以将人眼无法识别的图像进行分类处理。通过计算机模式识别技术可以快速准确地检索、匹配和识别出各种东西。
数字图像处理技术已经广泛深入地应用于国计民生休戚相关的各个领域。
在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。
中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术。
二值图像
一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。
灰度图像
灰度图像矩阵元素的取值范围通常为[0,255]。因此其数据类型一般为8位无符号整数的(int8),这就是人们经常提到的256灰度图像。“0”表示纯黑色,“255”表示纯白色,中间的数字从小到大表示由黑到白的过渡色。在某些软件中,灰度图像也可以用双精度数据类型(double)表示,像素的值域为[0,1],0代表黑色,1代表白色,0到1之间的小数表示不同的灰度等级。二值图像可以看成是灰度图像的一个特例。
索引图像
索引图像的文件结构比较复杂,除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组。MAP的大小由存放图像的矩阵元素值域决定,如矩阵元素值域为[0,255],则MAP矩阵的大小为256Ⅹ3,用MAP=[RGB]表示。MAP中每一行的三个元素分别指定该行对应颜色的红、绿、蓝单色值,MAP中每一行对应图像矩阵像素的一个灰度值,如某一像素的灰度值为64,则该像素就与MAP中的第64行建立了映射关系,该像素在屏幕上的实际颜色由第64行的[RGB]组合决定。也就是说,图像在屏幕上显示时,每一像素的颜色由存放在矩阵中该像素的灰度值作为索引通过检索颜色索引矩阵MAP得到。索引图像的数据类型一般为8位无符号整形(int8),相应索引矩阵MAP的大小为256Ⅹ3,因此一般索引图像只能同时显示256种颜色,但通过改变索引矩阵,颜色的类型可以调整。索引图像的数据类型也可采用双精度浮点型(double)。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸多采用索引图像存放,如果图像的色彩比较复杂,就要用到RGB真彩色图像。
RGB图像
RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像,当然也可以存放灰度图像。
数字化图像数据有两种存储方式:位图存储(Bitmap)和矢量存储(Vector)
我们平常是以图像分辨率(即像素点)和颜色数来描述数字图象的。例如一张分辨率为640*480,16位色的数字图片,就由2^16=65536种颜色的307200(=640*480)个素点组成。
位图图像:位图方式是将图像的每一个象素点转换为一个数据,当图像是单色(只有黑白二色)时,8个象素点的数据只占据一个字节(一个字节就是8个二进制数,1个二进制数存放象素点);16色(区别于前段“16位色”)的图像每两个象素点用一个字节存储;256色图像每一个象素点用一个字节存储。这样就能够精确地描述各种不同颜色模式的图像图面。
位图图像弥补了矢量式图像的缺陷,它能够制作出色彩和色调变化丰富的图像,可以逼真地表现自然界的景象,同时也可以很容易地在不同软件之间交换文件,这就是位图图像的优点;而其缺点则是它无法制作真正的3D图像,并且图像缩放和旋转时会产生失真的现象,同时文件较大,对内存和硬盘空间容量的需求也较高。位图方式就是将图像的每一像素点转换为一个数据。
如果用1位数据来记录,那么它只能代表2种颜色(2^1=2);如果以8位来记录,便可以表现出256种颜色或色调(2^8=256),因此使用的位元素越多所能表现的色彩也越多。通常我们使用的颜色有16色、256色、增强16位和真彩色24位。一般所说的真彩色是指24位(2^24)的位图存储模式适合于内容复杂的图像和真实照片。但随着分辨率以及颜色数的提高,图像所占用的磁盘空间也就相当大;另外由于在放大图像的过程中,其图像势必要变得模糊而失真,放大后的图像像素点实际上变成了像素“方格”。 用数码相机和扫描仪获取的图像都属于位图。
矢量图像:矢量图像存储的是图像信息的轮廓部分,而不是图像的每一个象素点。例如,一个圆形图案只要存储圆心的坐标位置和半径长度,以及圆的边线和内部的颜色即可。该存储方式的缺点是经常耗费大量的时间做一些复杂的分析演算工作,图像的显示速度较慢;但图像缩放不会失真;图像的存储空间也要小得多。所以,矢量图比较适合存储各种图表和工程。
图像编码的介绍
对图像信息编码,以满足传输和存储的要求。编码能压缩图像的信息量,但图像质量几乎不变。为此,可以采用模拟处理技术,再通过模-数转换得到编码,不过多数是采用数字编码技术。编码方法有对图像逐点进行加工的方法,也有对图像施加某种变换或基于区域、特征进行编码的方法。脉码调制、微分脉码调制、预测码和各种变换都是常用的编码技术。
图像压缩的介绍
由数字化得到的一幅图像的数据量十分巨大,一幅典型的数字图像通常由500×500或1000×1000个像素组成。如果是动态图像,是其数据量更大。因此图像压缩对于图像的存储和传输都十分必要。
有两类压缩算法,即无损压缩和有损压缩。最常用的无损压缩算法取空间或时间上相邻像素值的差,再进行编码。游程码就是这类压缩码的例子。有损压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。著名的、已作为图像压缩国际标准的JPEG和MPEG均属于有损压缩算法。前者用于静态图像,后者用于动态图像。它们已由芯片实现。
看过“图像处理基本知识“的人还看了:
1.投融资基本知识
2.图像处理教程
5.图书馆基础知识