学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 >

2020高三数学知识点总结与答题套路

时间: 慧良21230 分享

  在小学初中时复习靠老师,到了高中复习要靠自己。因为在高中的课程多,内容广,所以在课堂上不可能经常反复。一节课内容一个星期之内不复习就有可能变得陌生,最好是三天内复习一次。接下来小编为大家整理了高三数学学习内容,一起来看看吧!

  2020高三数学知识点总结

  高三数学知识点总结

  命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

  集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

  判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

  如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

  在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

  对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

  解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

  零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

  等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。

  在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

  高三数学必背的公式

  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  学好高中数学的方法

  认真听课适当做笔记,不放过任何联想小结的机会是读好书的关键。上课的内容有难有易,不能因为容易而轻视它,也不能因为困难而害怕它。容易的问题思维强度小,但所提供的思维空间却很大,可以把自己的方法与老师的方法进行整合,对相关的问题进行小结,对问题的发展进行预测,为后面更难的问题积累充足的思维惯性。

  弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。

  高考数学答题套路

  关于高考数学时间分配问题

  高考数学时间如何分配做选择题和填空题时,每道题的答题时间平均为3分钟,容易的题争取一分钟出答案。选择题有12道,填空题有4道,每道题占5分,争取在48分钟内拿下这80分。因为基本没有时间回头检查,要力求将试题一次搞定。做大题时,每道题的答题时间平均为10分钟左右。基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击最后几道大题;平时学习成绩一般的同学,对后几道大题,能做几问就做几问,争取拿到步骤分;平时成绩薄弱的考生,一般来说应主攻选择题和填空题,大题能做几问就做几问,最后答不出来的题可以选择放弃。

  高考数学答题套路

  1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换。

  2.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式。

  3.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用。

  4.立体几何中,求二面角b-oa-c的新方法。利用三面角余弦定理。设二面角b-oa-c是∠oa,∠aob是α,∠boc是β,∠aoc是γ,这个定理就是:cos∠oa=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。

  考数学之前主语构建答题模板

  ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

  ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

  ③求结果。

  ④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。


2020高三数学知识点总结与答题套路相关文章:

1.高三数学重要知识点总结,高考数学答题时有何技巧

2.高三数学各阶段复习要点总结及高分技巧分享

3.高考数学高分技巧,不同题型的答题套路,轻松搞定数学8大学习法

4.2019高考数学解答题答题策略是什么 高考数学考场答题技巧总结

5.高考数学怎样复习:大题小题答题套路不一样,答题技巧帮助你

117073