2018黑龙江省初中毕业考数学试卷
2018年黑龙江省的同学们,初中的毕业考试就快来了,数学都复习了吗?下面由学习啦小编为大家提供关于2018黑龙江省初中毕业考数学试卷,希望对大家有帮助!
2018黑龙江省初中毕业考数学试卷一、填空题
(每题3分,满分30分)
1.2017年,全国参加高考的考生达到940万人,.将940万用科学记数法表示为_______人.
2.在函数y= 中,自变量 的取值范围是___________.
3.如图,AD=BE,∠A=∠EDF添加一个条件 ,使得△ABC≌△DEF.
4. 在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到白球的概率是 ,则这个袋子中有红球___________个.
5.若关于 的一元一次不等式组 有解,则 的取值范围是___________.
6.为了鼓励居民节约用电,某自来水公司采取分段计费,每月每户用电不超过100度,每度电0.55元;超过100度电的部分,每度电加收0.3元.小明家4月份用电120度,应交电费___________元.
7.如图,△ABC内接于⊙O,CD⊥AB于点H.若BC=24,CD=18, ⊙O的半径OC=13,则AC=________.
8.要制作一个母线长为8㎝,底面半径是6㎝的圆锥形小漏斗,若不计损耗,则所需纸板的面积是_______.
9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点, ∠AOC=60°.则当△ABM为直角三角形时,AM的长为____________.
10.如图,四条直线 , , , .OA1=1,过点A1作A1A2⊥x轴,交 于点A2,再过点A2作A3A2⊥ 交 于点A3,再过点A3作A3A4⊥ 交y轴于点A4……,则点A2017坐标为___________.
2018黑龙江省初中毕业考数学试卷二、选择题
(每题3分,满分30分)
11.下列各运算中,计算正确的是 ( )
A. B. C. D.
12.下列图形中,既是轴对称图形又是中心对称图形的是 ( )
A B C D
13.如图,由若干个相同的小正方体搭成的一个几何体的三视图,则成这个几何体的小正方体的个数可能是( )
A.4 B.54 C.6 D.9
14.某市4月份日平均气温统计情况如图所示,则在日平均气温这组数据中,众数和中位数分别是 ( )
A.13,13 B.13,13.5 C.13,14 D.16,13
15.如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A、D、C、B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设 △AMN的面积为S,运动时间为t秒,则能大致反映s与t函数关系的图象是 ( )
16.在反比例函数 的图象的每一条曲线上,y随x的增大而增大,则k的值可以是 ( )
A. 2 B. 1 C. -1 D. 3
17.己知关于 的分式方程 的解是是非负数,那么 的取值范围是 ( )
A. >1 B. ≥4 C. ≥1且 ≠9 D. ≤1
18.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是 ( )
A.2 B. C. 4 D.
19.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费70元, 毽子单价6元, 跳绳单价10元,购买方案有 ( )
A.1种 B.2种 C.3种 D.4种
20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH.下列结论正确的个数是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE
④S△HDG: S△HBG=tan∠DAG ⑤线段DH的最小值是
A.2 B.3 C.4 D.5
2018黑龙江省初中毕业考数学试卷三、解答题
(满分60分)
21.(本题满分5分)先化简,再求值: ,其中 2sin45°
22.(本题满分6分)
如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-2,1),B(-4,4),C(-5,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC关于原点成中心对称的△A2B2C2.并写出A2坐标.
23.(本题满分6分)
如图,抛物线 经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.
(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点M是线段BD上一点,当ME=MC时,求点M的坐标;
24.(本题满分7分)
在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850 对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的等统计图表:
组别 步数分组 频数
A 5500≤x<6500 2
B 6500≤x<7500 10
C 7500≤x<8500 m
D 8500≤x<9500 3
E 9500≤x<10500 n
请根据以上信息解答下列问题:
(1)填空:m=_____.n=_____;
(2)补全频数分布直方图;
(3)这20名“健步走运动”团队成员一天行走步数的中位数落在 组;
(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.
得分 评卷人
25.(本题满分8分)
下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120).己知线段BC表示的函数关系中,
(1)当速度为 时,该汽车的耗油量最低?是低是多少?
(2)求线段AB所表示的y与x之间的函数表达式;
(3)甲、乙两地相距50km,一辆汽车的油箱里只有7L油,测汽车的速度应控制在什么范围内才能从甲地到乙地。
26.(本题满分8分)
如图,在锐角△ABC中∠CAB=45°,点E、F分别是直线AC、AB上的点,且EF=EB.
(1)如图1:当点E在线段AC上时,易证: .(不需证明)
(2)当点E在线段AC的延长线上时,如图2;当点E在CA的延长线上时,如图3.线段AE、AF、AB之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.
27.(本题满分10分)
某服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则进货方案有多少种?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0
(3)在销售甲乙两种服装过程中,服装店准备将剩余的10件打八折进行销售,如果总利润是3300元,则甲种服装最多进货多少件?
28.(本题满分10分)
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C(0,m)是线段BO上一点,过点C作CE⊥AB于点E,点D是线段OA上一个动点,连接CD,DE,以CD,DE为边做平行四边形CDEF.
(1)当0
(2)当m=3时,是否存在点D,使平行四边形CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;
(3)点D在运动的过程中,是否存在一个位置,使得平行四边形CDEF为矩形,求出满足条件的m的值.
猜你喜欢:
2018黑龙江省初中毕业考数学试卷
上一篇:山东潍坊中考数学试卷附答案解析
下一篇:2018浙江义乌中考数学试卷真题