2017初三数学寒假作业答案
2017初三数学寒假作业答案
同学们的寒假作业完成了吗?关于初三数学的寒假作业答案有哪些呢?下面是学习啦小编为大家带来的关于2017初三数学寒假作业的答案,希望会给大家带来帮助。
2017初三数学寒假作业参考答案
一、选择题: ACDA CABB
二、填空题:
9.a,a 10.2 11. 10 12. π 13. 0
三、解答题:
17.(1)x1=3,x2=1. (2)x1=12,x2=-11.
18.(6分)5.
19.(6分)解:(1)设方程的两根为x1,x2
则△=[﹣(k+1)]2﹣4( k2+1)=2k﹣3,
∵方程有两个实数根,∴△≥0,
即2k﹣3≥0,
∴k≥ .
(2)由题意得: ,
又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,
(k+1)2﹣2( k2+1)=5,
整理得k2+4k﹣12=0,
解得k=2或k=﹣6(舍去),
∴k的值为2.
20.(6分)解:(1)第二周的销售量为:400+100x=400+100×2=600.
总利润为:200×(10﹣6)+(8﹣6)×600+200(4﹣6)=1600.
答:当单价降低2元时,第二周的销售量为600和售完这批面具的总利润1600;
(2)由题意得出:200×(10﹣6)+(10﹣x﹣6)(400+100x)+(4﹣6)[(1000﹣200)﹣(400+100x)]=1300,
整理得:x2﹣2x﹣3=0,
解得:x1=3;x2=﹣1(舍去),
∴10﹣3=7(元).
答:第二周的销售价格为7元.
21.(6分) 解:(1)把甲组的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,
最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;
乙组成绩中10出现了4次,出现的次数最多,
则乙组成绩的众数是10分;
故答案为:9.5,10;
(2)乙组的平均成绩是: (10×4+8×2+7+9×3)=9,
则方差是: [4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;
(3)∵甲组成绩的方差是1.4,乙组成绩的方差是1,
∴选择乙组代表八(5)班参加学校比赛.
故答案为乙.
22.(6分)解:(1)∵DH∥AB,
∴∠BHD=∠ABC=90°,
∴△ABC∽△DHC,
∴ =3,
∴CH=1,BH=BC+CH,
在Rt△BHD中,
cos∠HBD= ,
∴BD•cos∠HBD=BH=4.
(2)∵∠CBD=∠A,∠ABC=∠BHD,
∴△ABC∽△BHD,
∴ ,
∵△ABC∽△DHC,
∴ ,
∴AB=3DH,
∴ ,
解得DH=2,
∴AB=3DH=3×2=6,
即AB的长是6.
23.(8分) 解:作PE⊥OB于点E,PF⊥CO于点F,
在Rt△AOC中,AO=100,∠CAO=60°,
∴CO=AO•tan60°=100 (米).
设PE=x米,
∵tan∠PAB= = ,
∴AE=2x.
在Rt△PCF中,∠CPF=45°,CF=100 ﹣x,PF=OA+AE=100+2x,
∵PF=CF,
∴100+2x=100 ﹣x,
解得x= (米).
答:电视塔OC高为100 米,点P的铅直高度为 (米).
24. (8分) 证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,
∴∠ABE=∠DAE,又∠EAC=∠EBC,
∴∠DAC=∠ABC,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠ABC=∠ACB,
∴AB=AC;
(2)作AF⊥CD于F,
∵四边形ABCE是圆内接四边形,
∴∠ABC=∠AEF,又∠ABC=∠ACB,
∴∠AEF=∠ACB,又∠AEB=∠ACB,
∴∠AEH=∠AEF,
在△AEH和△AEF中,
,
∴△AEH≌△AEF,
∴EH=EF,
∴CE+EH=CF,
在△ABH和△ACF中,
,
∴△ABH≌△ACF,
∴BH=CF=CE+EH.
25.(10分) 解:(1)∵AH⊥BE,∠ABE=45°,
∴AP=BP= AB=2,
∵AF,BE是△ABC的中线,
∴EF∥AB,EF= AB= ,
∴∠PFE=∠PEF=45°,
∴PE=PF=1,
在Rt△FPB和Rt△PEA中,
AE=BF= = ,
∴AC=BC=2 ,
∴a=b=2 ,
如图2,连接EF,
同理可得:EF= ×4=2,
∵EF∥AB,
∴△PEF~△ABP,
∴ ,
在Rt△ABP中,
AB=4,∠ABP=30°,
∴AP=2,PB=2 ,
∴PF=1,PE= ,
在Rt△APE和Rt△BPF中,
AE= ,BF= ,
∴a=2 ,b=2 ,
故答案为:2 ,2 ,2 ,2 ;
(2)猜想:a2+b2=5c2,
如图3,连接EF,
设∠ABP=α,
∴AP=csinα,PB=ccosα,
由(1)同理可得,PF= PA= ,PE= = ,
AE2=AP2+PE2=c2sin2α+ ,BF2=PB2+PF2= +c2cos2α,
∴ =c2sin2α+ , = +c2cos2α,
∴ + = +c2cos2α+c2sin2α+ ,
∴a2+b2=5c2;
(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,
∵点E、G分别是AD,CD的中点,
∴EG∥AC,
∵BE⊥EG,
∴BE⊥AC,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=2 ,
∴∠EAH=∠FCH,
∵E,F分别是AD,BC的中点,
∴AE= AD,BF= BC,
∴AE=BF=CF= AD= ,
∵AE∥BF,
∴四边形ABFE是平行四边形,
∴EF=AB=3,AP=PF,
在△AEH和△CFH中,
,
∴△AEH≌△CFH,
∴EH=FH,
∴EQ,AH分别是△AFE的中线,
由(2)的结论得:AF2+EF2=5AE2,
∴AF2=5 ﹣EF2=16,
∴AF=4.
26.(10分) 解:(1)把A(﹣1,0),B(4,0)两点的坐标代入y=ax2+bx+2中,可得
解得
∴抛物线的解析式为:y=﹣ x2+ x+2.
(2)∵抛物线的解析式为y=﹣ x2+ x+2,
∴点C的坐标是(0,2),
∵点A(﹣1,0)、点D(2,0),
∴AD=2﹣(﹣1)=3,
∴△CAD的面积= ,
∴△PDB的面积=3,
∵点B(4,0)、点D(2,0),
∴BD=2,
∴|n|=3×2÷2=3,
∴n=3或﹣3,
①当n=3时,
﹣ m2+ m+2=3,
解得m=1或m=2,
∴点P的坐标是(1,3)或(2,3).
②当n=﹣3时,
﹣ m2+ m+2=﹣3,
解得m=5或m=﹣2,
∴点P的坐标是(5,﹣3)或(﹣2,﹣3).
综上,可得
点P的坐标是(1,3)、(2,3)、(5,﹣3)或(﹣2,﹣3).
(3)如图1,
设BC所在的直线的解析式是:y=mx+n,
∵点C的坐标是(0,2),点B的坐标是(4,0),
∴
解得
∴BC所在的直线的解析式是:y=﹣ x+2,
∵点P的坐标是(m,n),
∴点F的坐标是(4﹣2n,n),
∴EG2=(4﹣2n)2+n2=5n2﹣16n+16=5(n﹣ )2+ ,
∵n>0,
∴当n= 时,线段EG的最小值是: ,
即线段EG的最小值是 .
猜你感兴趣: