学习啦 > 学习方法 > 高中学习方法 > 高三学习方法 > 高三数学 > 2017年高考必备文科数学公式_高考文科数学公式大全

2017年高考必备文科数学公式_高考文科数学公式大全

时间: 凤婷983 分享

2017年高考必备文科数学公式_高考文科数学公式大全

  高中数学公式非常繁多,是困扰很多高考考生的巨大问题。因此在高考数学复习阶段,文科学生要熟记需要用到的公式。下面学习啦小编给大家带来高考文科必备数学公式,希望对你有帮助。

  高考必备文科数学公式(一)

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA)

  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  倍角公式 tan2A=2tanA/(1-tan2A)

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

  线线平行常用方法总结:

  (1)定义:在同一平面内没有公共点的两条直线是平行直线。

  (2)公理:在空间中平行于同一条直线的两只直线互相平行。

  (3)初中所学平面几何中判断直线平行的方法

  (4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

  (5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。

  (6)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。

  线面平行的判定方法:

  ⑴定义:直线和平面没有公共点.

  ( 2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行

  (3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面

  (4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面

  判定两平面平行的方法:

  (1)依定义采用反证法

  (2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

  (3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

  (4)垂直于同一条直线的两个平面平行。

  (5)平行于同一个平面的两个平面平行。

  证明线与线垂直的方法:

  (1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

  证明线面垂直的方法:

  (1)线面垂直的定义

  (2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

  (3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

  (4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

  (5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

  判定两个平面垂直的方法:

  (1)利用定义(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

  夹在两个平行平面之间的平行线段相等。经过平面外一点有且仅有一个平面与已知平面平行。两条直线被三个平行平面所截,截得的对应线段成比例。

  高考必备文科数学公式(二)

  秦九韶三角形中线面积公式:

  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

  其中Ma,Mb,Mc为三角形的中线长.

  平行四边形的面积=底×高

  梯形的面积=(上底+下底)×高÷2

  直径=半径×2 半径=直径÷2

  圆的周长=圆周率×直径=圆周率×半径×2

  圆的面积=圆周率×半径×半径

  长方体的表面积=(长×宽+长×高+宽×高)×2

  长方体的体积 =长×宽×高

  正方体的表面积=棱长×棱长×6

  正方体的体积=棱长×棱长×棱长

  圆柱的侧面积=底面圆的周长×高

  圆柱的表面积=上下底面面积+侧面积

  圆柱的体积=底面积×高

  圆锥的体积=底面积×高÷3

  长方体(正方体、圆柱体)的体积=底面积×高

  定理1 关于某条直线对称的两个图形是全等形

  定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

  定理 四边形的内角和等于360°

  四边形的外角和等于360°

  多边形内角和定理 n边形的内角的和等于(n-2)×180°

  高考文科数学知识点

  高考文科数学知识点:导数

  一、综述

  导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

  1.导数的常规问题:

  (1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

  2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

  3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

  二、知识整合

  1.导数概念的理解。

  2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

  复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

  3.要能正确求导,必须做到以下两点:

  (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

  (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

  高考文科数学知识点:不等式

  不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

  知识整合

  1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

  2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

  3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

  4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

  高考文科数学知识点:立体几何

  1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2.判定两个平面平行的方法:

  (1)根据定义--证明两平面没有公共点;

  (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

  (3)证明两平面同垂直于一条直线。

  3.两个平面平行的主要性质:

  (1)由定义知:“两平行平面没有公共点”;

  (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

  (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;

  (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

  (5)夹在两个平行平面间的平行线段相等;

  (6)经过平面外一点只有一个平面和已知平面平行。

♑♑点击一下更多精彩“高考数学公式”♑♑


看了“2017年高考必备文科数学公式”的人还看了:

1.2017高考必备数学公式

2.2017年高考数学公式总结口诀

3.2017高考文科数学复习计划

4.高考必备的数学公式汇总

5.2017高考数学口诀整理

6.2017届高考文科数学知识点总结

7.高考文科数学必备公式

8.2017高一数学必备公式

2688522