学习啦>学习方法>高中学习方法>高二学习方法>高二数学>

高一数学公式(关于函数)

时间: 文娟843 分享

  学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。下面是学习啦小编为大家整理的高一数学函数相关公式,希望对大家有所帮助!

  高一数学公式:函数公式

  一、映射与函数:

  (1)映射的概念: (2)一一映射:(3)函数的概念:

  如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。

  函数 的图象与直线 交点的个数为 个。

  二、函数的三要素:

  相同函数的判断方法:① ;② (两点必须同时具备)

  (1)函数解析式的求法:

  ①定义法(拼凑):②换元法:③待定系数法:④赋值法:

  (2)函数定义域的求法:

  ① ,则 ; ② 则 ;

  ③ ,则 ; ④如: ,则 ;

  ⑤含参问题的定义域要分类讨论;

  如:已知函数 的定义域是 ,求 的定义域。

  ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。

  (3)函数值域的求法:

  ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

  ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

  ④换元法:通过变量代换转化为能求值域的函数,化归思想;

  ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

  ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

  ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

  ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

  求下列函数的值域:① (2种方法);

  ② (2种方法);③ (2种方法);

  三、函数的性质:

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

  f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

  判别方法:定义法, 图像法 ,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

  应用:求函数值和某个区间上的函数解析式。

  四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换 y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。

  对称变换 y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x) ,关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
看过"高一数学公式(关于函数) "的还看了:

1.高一全部数学公式

2.高中数学公式总结:三角函数公式大全

3.高一必修二数学公式

1237182