学习啦 > 学习方法 > 初中学习方法 > 初一学习方法 > 七年级数学 > 湘教版七年级数学教案

湘教版七年级数学教案

时间: 妙纯901 分享

湘教版七年级数学教案

  从数学教案的涵义,教案的基本内容,教案的编写要求,编写教案的三种境界,教案的管理等方面阐述了编写教案的必要性,它有益于提高数学教学质量。下面是小编为大家精心整理的湘教版七年级数学教案,仅供参考。

  湘教版七年级数学教案

  第一章 有理数 (总第 1 课时)

  一、全章概况:

  本章主要分两部分:有理数的认识,有理数的运算。

  二、本章教学目标

  1、知识与技能

  (1)理解有理数的有关概念及其分类。

  (2)能用数轴上的点表示有理数,会比较有理数的大小,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

  (3)理解有理数运算的意义和有理数运算律,经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主),并能运用运算律简化运算。

  (4)能运用有理数的有关知识解决一些简单的实际问题。

  2、过程与方法

  (1)通过实例的引入,认识到数学的发展来源于生产和生活,培养学生热爱数学并自学地学习数学的习惯。

  (2)通过对有理数的加、减、乘、除、乘方的学习,培养学生独立思考、认真作业的态度,提高运算能力,逐步激发学生的创新意识。

  3、情感、态度与价值观

  (1)通过对有理数有关概念的理解,使学生了解正与负、加与减、乘与除的辩证关系,初步感受数学的分类思想。

  (2)通过师生互动,讨论与交流,培养学生善于观察、抽象、归纳的数学思想品质,提高分析问题和解决问题的能力。

  三、本章重点难点:

  1、重点:有理数的运算。

  2、难点:对有理数运算法则的理解(特别是混合运算中符号的确定)。

  四、本章教学要求

  认识有理数,首先是引入负数,必须从学生熟知的现实生活中,挖掘具有相反意义的量的资源,让学生有真切的感受,然后才引出用正负数表示这些具有相反意义的量,在理解有理数的意义时,注意运算数轴这个直观模型。

  无论是有理数的认识,还是有理数运算的教学,都应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”等数学活动中来,并适时搭建“合作交流”的平台,让学生在学习数学中,动脑想、动手做、动口说,力求让学生自己建立个性化的认识结构。

  在有理数的运算教学中,应鼓励学生自己探索运算法则和运算律,并通过适量的练习巩固,提倡算法多样化,反对做繁难的笔算,遇到较为复杂的计算应指导使用计算器。

  注意教学反思。关注学生的学习过程,及时调整教学,促进师生共同改进。

  第 一 课 时 (总第 2 课时)

  教学内容:§1.1 具有相反意义的量

  教学目标:

  1、知识与技能

  (1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。

  (2)理解有理数的意义,体会有理数应用的广泛性。

  2、过程与方法

  通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。

  重点、难点:

  1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。

  2、难点:对负数的理解以及正确地对有理数进行分类。

  教学过程:

  一、创设情景,导入新课

  大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.

  为了表示一个人、两只手、„„,我们用到整数1,2,„„

  为了表示“没有人”、“没有羊”、„„,我们要用到0.

  但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。

  二、合作交流,解读探究

  1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多„„例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  待学生思考后,请学生回答、评议、补充。

  教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,³5℃表示零下5℃„„.其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

  2、给出新的整数、分数概念

  引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

  3、给出有理数概念

  整数和分数统称为有理数。

  4、有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充。

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

  七年级数学知识点

  有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

湘教版七年级数学教案相关文章:

1.七年级数学上学期期末试题湘教版

2.湘教版八年级数学上册教案

3.湘教版八年级上册数学教案

4.湘教版八年级数学下册教案

5.七年级数学上册教案

1832245