学习啦>学习方法>初中学习方法>初二学习方法>八年级数学>

2017年八年级期末数学考试卷

时间: 妙纯901 分享

  只有通过不断的做数学模拟考试卷,才能使八年级数学知识的记忆达到一定的巩固程度,期末才能考出好成绩。学习啦为大家整理了2017年八年级数学的期末考试卷,欢迎大家阅读!

  2017年八年级期末数学考试卷

  一、选择题(共12小题,每小题3分,满分36分)

  1.要使分式 有意义,x的取值范围满足(  )

  A.x=0 B.x≠0 C.x>0 D.x<0

  2.下列各式中能用平方差公式是(  )

  A.(x+y)(y+x) B.(x+y)(y﹣x) C.(x+y)(﹣y﹣x) D.(﹣x+y)(y﹣x)

  3.下列计算结果正确的是(  )

  A.x•x2=x2 B.(x5)3=x8 C.(ab)3=a3b3 D.a6÷a2=a3

  4.下列长度的三条线段,哪一组不能构成三角形(  )

  A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9

  5.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是(  )

  A.AB=2BF B.∠ACE= ∠ACB C.AE=BE D.CD⊥BE

  6.如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于容器内径A′B′,那么判定△OAB≌△OA′B′的理由是(  )

  A.边边边 B.边角边 C.角边角 D.角角边

  7.下列计算正确的是(  )

  A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=

  8.已知y2+10y+m是完全平方式,则m的值是(  )

  A.25 B.±25 C.5 D.±5

  9.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为(  )

  A.72° B.36° C.60° D.82°

  10.在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=75°,则∠ABC的大小为(  )

  A.25° B.35° C.37.5° D.45°

  11.若分式 ,则分式 的值等于(  )

  A.﹣ B. C.﹣ D.

  12.若x2+cx+6=(x+a)(x+b),其中a,b,c为整数,则c的取值有(  )

  A.1个 B.2个 C.4个 D.8个

  二、填空题(共7小题,每小题4分,满分28分)

  13.计算3a2b3•(﹣2ab)2=      .

  14.分解因式:a2b﹣b3=      .

  15.如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ=      .

  16.如图,将一张长方形纸片折叠成如图所示的形态,∠CBD=40°,则∠ABC=      .

  17.如图,点E为等边△ABC中AC边的中点,AD⊥BC,且AD=5,P为AD上的动点,则PE+PC的最小值为      .

  18.若关于x的分式方程 无解,则m的值是      .

  19.如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是      .

  三、解答题(共5小题,满分56分)

  20.解答下列各题:

  (1)分解因式:4a2﹣8ab+4b2﹣16c2

  (2)计算:(2a+b)(2a﹣b)+b(2a+b)﹣8a2b÷2b

  (3)化简求值:( ﹣ )÷ ,其中x=﹣3

  (4)解分式方程: ﹣1= .

  21.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:

  (1)FC=AD;

  (2)AB=BC+AD.

  22.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.

  23.从2014年春季开始,我县农村实行垃圾分类集中处理,对农村环境进行综合整治,靓化了我们的家园.现在某村要清理一个卫生死角内的垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍,求甲、乙两车单独运完此堆垃圾各需运多少趟?

  24.常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:

  (1)分解因式:a2﹣4a﹣b2+4;

  (2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.

  2017年八年级期末数学考试卷参考答案

  一、选择题(共12小题,每小题3分,满分36分)

  1.要使分式 有意义,x的取值范围满足(  )

  A.x=0 B.x≠0 C.x>0 D.x<0

  【分析】根据分母不等于0,列式即可得解.

  【解答】解:根据题意得,x≠0.

  故选B.

  【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:

  (1)分式无意义⇔分母为零;

  (2)分式有意义⇔分母不为零;

  (3)分式值为零⇔分子为零且分母不为零.

  2.下列各式中能用平方差公式是(  )

  A.(x+y)(y+x) B.(x+y)(y﹣x) C.(x+y)(﹣y﹣x) D.(﹣x+y)(y﹣x)

  【分析】利用平方差公式的结构特征判断即可得到结果.

  【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,

  故选B

  【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.

  3.下列计算结果正确的是(  )

  A.x•x2=x2 B.(x5)3=x8 C.(ab)3=a3b3 D.a6÷a2=a3

  【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.

  【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;

  B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.

  C、(ab)3=a3b3,故本选项正确;

  D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.

  故选C.

  【点评】本题考查同底数幂的除法,积的乘方,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.

  4.下列长度的三条线段,哪一组不能构成三角形(  )

  A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9

  【分析】先回顾一下三角形的三边关系定理,根据判定定理逐个判断即可.

  【解答】解:A、3+3>3,符合三角形的三边关系定理,故本选项错误;

  B,3+4>5,3+5>4,5+4>3,符合三角形的三边关系定理,故本选项错误;

  C、5+6>10,5+10>6,6+10>5,符合三角形的三边关系定理,故本选项错误;

  D、4+5=9,不符合三角形的三边关系定理,故本选项正确;

  故选D.

  【点评】本题考查了三角形的三边关系定理的应用,主要考查学生的理解能力和辨析能力,注意:三角形的任意两边之和大于第三边,三角形的两边之差小于第三边.

  5.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是(  )

  A.AB=2BF B.∠ACE= ∠ACB C.AE=BE D.CD⊥BE

  【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.

  三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.

  三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.

  【解答】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,

  ∴CD⊥BE,∠ACE= ∠ACB,AB=2BF,无法确定AE=BE.

  故选C.

  【点评】考查了三角形的角平分线、中线和高,根据是熟悉它们的定义和性质.

  6.如图,将两根等长钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕着点O自由转动,就做成了一个测量工件,则AB的长等于容器内径A′B′,那么判定△OAB≌△OA′B′的理由是(  )

  A.边边边 B.边角边 C.角边角 D.角角边

  【分析】根据全等三角形的判定方法解答即可.

  【解答】解:∵AA′、BB′的中点O连在一起,

  ∴OA=OA′,OB=OB′,

  又∵∠AOB=∠A′OB′,

  ∴△OAB≌△OA′B′的理由是“边角边”.

  故选B.

  【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.

  7.下列计算正确的是(  )

  A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=

  【分析】根据乘方的意义判断A;根据负整数指数幂的意义判断B;根据零指数幂的意义判断C;根据负整数指数幂的意义判断D.

  【解答】解:A、32=9,故本选项错误;

  B、3﹣1= ,故本选项错误;

  C、30=1,故本选项错误;

  D、3﹣1= ,故本选项正确;

  故选D.

  【点评】本题考查了乘方的意义,负整数指数幂的意义,零指数幂的意义,是基础知识,需熟练掌握.

  8.已知y2+10y+m是完全平方式,则m的值是(  )

  A.25 B.±25 C.5 D.±5

  【分析】直接利用完全平方公式求出m的值.

  【解答】解:∵y2+10y+m是完全平方式,

  ∴y2+10y+m=(y+5)2=y2+10y+25,

  故m=25.

  故选:A.

  【点评】此题主要考查了完全平方公式,熟练应用完全平方公式是解题关键.

  9.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为(  )

  A.72° B.36° C.60° D.82°

  【分析】先根据AB=AC,∠A=36°求出∠ABC及∠C的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.

  【解答】解:∵AB=AC,∠A=36°,

  ∴∠ABC=∠C= = =72°,

  ∵DE垂直平分AB,

  ∴∠A=∠ABD=36°,

  ∴∠BDC=∠A+∠ABD=36°+36°=72°.

  故选A.

  【点评】本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.

  10.在△ABC中,AD是∠BAC的平分线,且AB=AC+CD,若∠BAC=75°,则∠ABC的大小为(  )

  A.25° B.35° C.37.5° D.45°

  【分析】可在AB上取AC′=AC,则由题中条件可得BC′=C′D,即∠C=∠AC′D=2∠B,再由三角形的内角和即可求解∠B的大小.

  【解答】解:在AB上取AC′=AC,

  在△ACD和△AC′D中,

  ,

  ∴△ACD≌△AC′D(SAS),

  又∵AB=AC+CD,得AB=AC′+C′D,

  ∴BC′=C′D,

  ∴∠C=∠AC'D=2∠B,

  又∵∠B+∠C=180°﹣∠BAC=105°,

  ∴∠B=35°.

  故选B.

  【点评】本题主要考查了全等三角形的判定及性质问题,熟记相似三角形的判定和巧作辅助线是解题的关键.

  11.若分式 ,则分式 的值等于(  )

  A.﹣ B. C.﹣ D.

  【分析】根据已知条件,将分式 整理为y﹣x=2xy,再代入则分式 中求值即可.

  【解答】解:整理已知条件得y﹣x=2xy;

  ∴x﹣y=﹣2xy

  将x﹣y=﹣2xy整体代入分式得

  =

  =

  =

  = .

  故答案为B.

  【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.

  12.若x2+cx+6=(x+a)(x+b),其中a,b,c为整数,则c的取值有(  )

  A.1个 B.2个 C.4个 D.8个

  【分析】已知等式右边利用多项式乘以多项式法则计算,即可确定出c的取值个数.

  【解答】解:x2+cx+6=(x+a)(x+b)=x2+(a+b)x+ab,

  可得c=a+b,ab=6,

  即a=1,b=6,此时c=1+6=7;a=2,b=3,此时c=2+3=5;a=﹣3,b=﹣2,此时c=﹣3﹣2=﹣5;a=﹣1,b=﹣6,此时c=﹣1﹣6=﹣7,

  则c的取值有4个.

  故选C

  【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.

  二、填空题(共7小题,每小题4分,满分28分)

  13.计算3a2b3•(﹣2ab)2= 12a4b5 .

  【分析】首先利用积的乘方运算法则化简,进而利用单项式乘以单项式运算法则求出即可.

  【解答】解:3a2b3•(﹣2ab)2=3a2b3•4a2b2=12a4b5.

  故答案为:12a4b5.

  【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.

  14.分解因式:a2b﹣b3= b(a+b)(a﹣b) .

  【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).

  【解答】解:a2b﹣b3,

  =b(a2﹣b2),(提取公因式)

  =b(a+b)(a﹣b).(平方差公式)

  故答案为:b(a+b)(a﹣b).

  【点评】本题考查提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解因式要彻底.

  15.如图,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,则PQ= 2 .

  【分析】过点P作PM⊥OB于M,根据平行线的性质可得到∠BCP的度数,再根据直角三角形的性质可求得PM的长,根据角平分线上的点到角两边的距离相等得到PM=PQ,从而求得PQ的长.

  【解答】解:过点P作PM⊥OB于M,

  ∵PC∥OA,

  ∴∠COP=∠CPO=∠POQ=15°,

  ∴∠BCP=30°,

  ∴PM= PC=2,

  ∵PQ=PM,

  ∴PQ=2.

  故答案为:2.

  【点评】本题考查了等腰三角形的性质及含30°角的直角三角形的性质;解决本题的关键就是利用角平分线的性质,把求PQ的长的问题进行转化.

  16.如图,将一张长方形纸片折叠成如图所示的形态,∠CBD=40°,则∠ABC= 70° .

  【分析】首先根据邻补角定义可得∠CBC′=180°﹣40°=140°,再根据折叠可得∠CBA=∠C′BA,进而得到答案.

  【解答】解:∵∠CBD=40°,

  ∴∠CBC′=180°﹣40°=140°,

  根据折叠可得∠CBA=∠C′BA,

  ∴∠ABC=140°÷2=70°,

  故答案为:70°.

  【点评】此题主要考查了翻折变换,关键是掌握图形翻折后哪些角是对应相等的.

  17.如图,点E为等边△ABC中AC边的中点,AD⊥BC,且AD=5,P为AD上的动点,则PE+PC的最小值为 5 .

  【分析】先根据锐角三角函数的定义求出AB的长,连接BE,则线段BE的长即为PE+PC最小值.

  【解答】解:∵△ABC是等边三角形,AD⊥BC,且AD=5,

  ∴AB= = = ,

  连接BE,线段BE的长即为PE+PC最小值,

  ∵点E是边AC的中点,

  ∴CE= AB= × = cm,

  ∴BE= = = =5,

  ∴PE+PC的最小值是5.

  故答案为:5.

  【点评】本题考查的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键.

  18.若关于x的分式方程 无解,则m的值是 3 .

  【分析】先把分式方程化为整式方程得到x=m﹣2,由于关于x的分式方程 无解,则最简公分母x﹣1=0,求得x=1,进而得到m=3.

  【解答】解:去分母,得m﹣3=x﹣1,

  x=m﹣2.

  ∵关于x的分式方程无解,

  ∴最简公分母x﹣1=0,

  ∴x=1,

  当x=1时,得m=3,

  即m的值为3.

  故答案为3.

  【点评】本题考查了分式方程的解:使分式方程左右两边成立的未知数的值叫分式方程的解.当分式方程无解时可能存在两种情况:(1)原分式方程存在增根;(2)原分式方程去分母后,整式方程无解.本题中由于原分式方程去分母后,得到的整式方程为一元一次方程,必定有解,所以只有一种情况.

  19.如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是 2 .

  【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解.

  【解答】解:∵∠C=∠A=∠DOP=60°,OD=OP,

  ∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,

  ∴∠CDO=∠AOP.

  ∴△ODC≌△POA.

  ∴AP=OC.

  ∴AP=OC=AC﹣AO=2.

  故答案为:2.

  【点评】解决本题的关键是利用全等把所求的线段转移到已知的线段上.

  三、解答题(共5小题,满分56分)

  20.解答下列各题:

  (1)分解因式:4a2﹣8ab+4b2﹣16c2

  (2)计算:(2a+b)(2a﹣b)+b(2a+b)﹣8a2b÷2b

  (3)化简求值:( ﹣ )÷ ,其中x=﹣3

  (4)解分式方程: ﹣1= .

  【分析】(1)首先提公因式4,然后把前三项写成完全平方的形式,利用平方差公式分解;

  (2)首先利用平方差公式以及单项式与多项式的乘法、单项式与单项式的除法法则计算,然后合并同类项即可;

  (3)首先把括号内的分式的分母分解因式,把除法转化为乘法,然后利用分配律计算,最后进行分式的加减即可;

  (4)首先去分母转化为整式方程求得x的值,然后进行检验即可.

  【解答】解:(1)原式=4(a2﹣2ab+b2﹣4c2)

  =4[(a2﹣2ab+b2)﹣4c2]=4[(a﹣b)2﹣4c2]

  =4(a﹣b+2c)(a﹣b﹣2c);

  (2)原式=4a4﹣b2+2ab+b2﹣4a2=2ab;

  (3)原式=[ ﹣ ]÷

  = • ﹣ •

  = ﹣

  =

  =

  =

  =

  =1;

  (4)方程两边同时乘以(x+2)(x﹣2)得,x(x+2)﹣(x2﹣4)=8,

  去括号,得x2+2x﹣x2﹣4=8,

  解得:x=6,

  检验:当x=6时,(x+2)(x﹣2)=8×4=32≠0.

  则x=6是方程的解.

  【点评】本题考查了分式的化简求值以及分式方程的解法,正确进行分解因式是关键,且要注意解分式方程时一定要检验.

  21.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:

  (1)FC=AD;

  (2)AB=BC+AD.

  【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.

  (2)根据线段垂直平分线的性质判断出AB=BF即可.

  【解答】证明:(1)∵AD∥BC(已知),

  ∴∠ADC=∠ECF(两直线平行,内错角相等),

  ∵E是CD的中点(已知),

  ∴DE=EC(中点的定义).

  ∵在△ADE与△FCE中,

  ,

  ∴△ADE≌△FCE(ASA),

  ∴FC=AD(全等三角形的性质).

  (2)∵△ADE≌△FCE,

  ∴AE=EF,AD=CF(全等三角形的对应边相等),

  ∴BE是线段AF的垂直平分线,

  ∴AB=BF=BC+CF,

  ∵AD=CF(已证),

  ∴AB=BC+AD(等量代换).

  【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.

  22.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.

  【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.

  【解答】证明:连接BD,

  ∵在等边△ABC,且D是AC的中点,

  ∴∠DBC= ∠ABC= ×60°=30°,∠ACB=60°,

  ∵CE=CD,

  ∴∠CDE=∠E,

  ∵∠ACB=∠CDE+∠E,

  ∴∠E=30°,

  ∴∠DBC=∠E=30°,

  ∴BD=ED,△BDE为等腰三角形,

  又∵DM⊥BC,

  ∴M是BE的中点.

  【点评】本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.

  23.从2014年春季开始,我县农村实行垃圾分类集中处理,对农村环境进行综合整治,靓化了我们的家园.现在某村要清理一个卫生死角内的垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍,求甲、乙两车单独运完此堆垃圾各需运多少趟?

  【分析】设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运3x趟,根据两车各运15趟可完成总任务,列方程求解.

  【解答】解:设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运3x趟,

  根据题意得: + =1,

  解得:x=20,

  经检验:x=20是方程的解,且符合题意,

  则20×3=60(趟).

  答:甲车单独运完此堆垃圾需运20趟,乙车单独运完此堆垃圾需运60趟.

  【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.

  24.常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:

  (1)分解因式:a2﹣4a﹣b2+4;

  (2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.

  【分析】(1)首先将a2﹣4a+4三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;

  (2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.

  【解答】解:(1)a2﹣4a﹣b2+4

  =a2﹣4a+4﹣b2

  =(a﹣2)2﹣b2

  =(a+b﹣2)(a﹣b﹣2);

  (2)a2﹣ab﹣ac+bc=0,

  ∴a2﹣ab﹣(ac﹣bc)=0,

  ∴a(a﹣b)﹣c(a﹣b)=0,

  ∴(a﹣b)(a﹣c)=0,

  ∴a﹣b=0,或者a﹣c=0,

  即:a=b,或者a=c

  ∴△ABC是等腰三角形.

  【点评】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.


猜你感兴趣:

1.2017八年级数学期末试卷及答案

2.2017数学八年级期末考试卷

3.2017八年级数学期末考试卷

4.八年级2017年数学期末考试答案

5.八年级上册数学期末试卷带答案2017

2017年八年级期末数学考试卷

只有通过不断的做数学模拟考试卷,才能使八年级数学知识的记忆达到一定的巩固程度,期末才能考出好成绩。学习啦为大家整理了2017年八年级数学的期末考试卷,欢迎大家阅读! 2017年八年级期末数学考试卷 一、选择题(共12小题,每小题3分,
推荐度:
点击下载文档文档为doc格式

精选文章

  • 八年级数学上册期末试卷
    八年级数学上册期末试卷

    通过做数学期末试卷复习题可以弄懂在课堂上没有理解或没有完全理解的问题。小编整理了关于八年级数学上册期末试卷,希望对大家有帮助! 八年级数学

  • 八年级上数学复习题附答案
    八年级上数学复习题附答案

    做数学复习题就是重复学习以前学过的八年级数学上册知识。下面是学习啦小编为大家精心推荐的八年级上数学的复习题及答案,希望能够对您有所帮助。

  • 八年级上册数学课本复习题
    八年级上册数学课本复习题

    学过的八年级上册数学知识如果不通过做复习题使之牢固的保持在记忆中,就会像猴子掰玉米棒子一样,学一点丢一点。这是学习啦小编整理的八年级上册

  • 苏教版八年级数学期末复习卷
    苏教版八年级数学期末复习卷

    做数学复习练习题有利于加深理解。下面是小编为大家精心整理的苏教版八年级数学期末复习卷,仅供参考。 苏教版八年级数学期末复习卷 一、选择题:

1881662