学习啦 > 论文大全 > 毕业论文 > 工学论文 > 材料工程学 > 跟材料学有关的论文

跟材料学有关的论文

时间: 秋梅1032 分享

跟材料学有关的论文

  材料学作为战略性领域的基础学科,在国防建设、基础设施、军用民用等领域具有广阔的应用价值。下文是学习啦小编为大家整理的跟材料学有关的论文的范文,欢迎大家阅读参考!

  跟材料学有关的论文篇1

  浅析导电高分子材料及其应用

  摘要:自从1977年来,导电高分子材料的研究受到了普遍的重视和发展。介绍了导电高分子材料的分类、导电机制、在各领域中的应用及研究进展。

  关键词:高分子材料;导电机理;导电塑料;用途

  20世纪70年代,白川英树、Heeger和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。导电高分子材料的发现,改变了人们对传统塑料、橡胶等高分子材料是电、热的不良导体的观念,经过40多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为金属材料和无机导电材料的优良替代品。而今这种导电高分子材料已广泛应用于电子工业、航空航天工业之中,并对新型生物材料和新能源材料的开发产生巨大的影响。

  1 高分子材料的分类及导电机理

  导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6 S/cm以上的聚合物材料。这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105 S/cm)的范围里变化。这种特性是目前其他材料所无法比拟的。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。

  1.1 结构型导电高分子材料

  结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料,一般是由电子高度离域的共轭聚合物经过适当电子受体或供体进行掺杂后制得的。结构型导电高分子材料具有易成型、质量轻、结构易变和半导体特性。最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。这种掺杂后的聚乙炔的电导率高达105 S/cm。后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。

  1.1.1 聚乙炔

  纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5等)后才能导电。与半导体不同的是,掺杂聚乙炔导电载流子是孤子。

  聚乙炔中孤子是怎样形成的呢?反式聚乙炔结构有两种形式,互为镜像,如图1所示:

  A相和B相能量相等,都是基态。如果原来整个反式聚乙炔处于A相,通过激发可以变为B相,中间出现的过渡区域,称为正畴壁,反之称为反畴壁。正畴壁称为孤子,反畴壁称为反孤子[1]。激发过程中所提供的能量只分布在正、反畴壁中,畴壁以外的部分能量不变。孤子态是由导带和价带各提供1/2个能级构成的,因此电荷Q=0,当用施主或受主杂质进行掺杂形成荷电孤子后,Q=±e。反式聚乙炔掺杂后,施主杂质向碳链提供电子,被激发形成的孤子带有负电,如果是受主杂质,将从碳链中吸取电子,使孤子带有正电。这样孤子就成为反式聚乙炔中的导电载流子。

  聚乙炔是目前世界上室温下电导率最高的一种非金属材料,它比金属质量轻、延展性好,可用作太阳能电池、电磁开关、抗静电油漆、轻质电线、纽扣电池和高级电子器件等。

  1.1.2 聚对苯撑

  聚对苯撑(PPP)有如图2 所示两种结构形式:

  其中(a)式稳定,而(b)不稳定,很难单独存在,当FeCl3与PPP掺杂时发生电荷转移使PPP分子链成为正离子,而FeCl3以FeCl4-负离子的形式加到分子链上,同时FeCl3被还原成FeCl2[2],即:

  2FeCl3+e→FeCl4-+FeCl2

  因此,掺杂过程实际上是一个氧化还原过程或电荷转移过程。如果掺杂剂为受体分子,电荷转移使高分子链成为正离子,掺杂剂为负离子,如果掺杂剂为给体时,则相反。聚对苯撑(PPP)的导电性和热稳定性优良,有多种合成方法,常温下为粉末,难以加工成型。电化学聚合可得到薄膜状产品,但电化学聚合的产物聚合度小、电气特性和机械性能低,可采用可溶性预聚体转换工艺提高其聚合度。

  1.1.3 聚噻吩

  噻吩的分子结构如图3所示,环上有两类C原子,因此在发生聚合反应时会有3种连接结构,其中α-α连接时,噻吩环之间的扭转角度最低,当其与一些复合材料发生掺杂时会通过π-π键共轭作用结合在一起,形成一个个相对独立的导电单元,这些导电单元相对纯的聚噻吩而言,具有更高的电导率[3]。

  1.1.4 聚吡咯

  聚吡咯(PPy)是少数稳定的导电高聚物之一,但纯PPy只有经过合适掺杂剂掺杂后才能表现出较好的导电性。聚吡咯常用的掺杂剂有金属盐类如FeCl3,卤素I2、Br2,质子酸如H2SO4等。不同种类的掺杂剂对PPy掺杂及形成高导电性的机理不同,但大部分具有氧化性的掺杂剂,其掺杂过程可以用电荷转移机理来解释。按此机理掺杂时,聚合物链给出电子,掺杂剂被还原成掺杂剂离子,然后此离子与聚合物链形成复合物以保持电中性。以FeCl3为氧化剂制备聚吡咯,通过电荷转移形成复合物,反应按下式进行[4]:

  1.1.5 聚苯胺

  与其他导电高聚物一样,聚苯胺(PAN)是共轭高分子,在高分子主链上交替重复单双链结构,具有的价电子云分布在分子内,相互作用形成能带等。其化学结构如图4 所示。

  聚苯胺可以看作是苯二胺与醌二亚胺的共聚物,x的值用于表征聚苯胺的氧化还原程度,不同的x值对应于不同的结构、组分及电导率。完全还原型(x=1)和完全氧化型(x=0)都为绝缘体,在0

  聚苯胺(PAN)的研究后来居上,它与热塑性塑料掺混具有良好的导电性,与其他导电高聚物相比,具有良好的环境稳定性,易制成柔软、坚韧的膜,且价廉易得等优点。在日用商品及高科技方面有着广泛的应用前景。

  1.2 复合型导电高分子材料

  复合型导电高分子材料是以高分子聚合物作基体,加入相当数量的导电物质组合而成的,兼有高分子材料的加工性和金属导电性。既具有导电填料的导电性、导热性以及电磁屏蔽性,又具有基体高聚物的热塑性、柔韧性以及成型性,因而具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等很多优良的特点,已被广泛应用于电子工业、信息产业以及其他各种工程应用中。复合型导电塑料是经物理改性后具有导电性的塑料,一般是将导电性物质如碳黑、金属粉末、金属粒子、金属丝和碳纤维等掺混于树脂中制成。在技术上比结构型导电塑料成熟,不少品种已商业化生产。

  目前,关于复合型导电高分子材料的导电机理有宏观渗流理论,即导电通路学说、微观量子力学隧道效应理论和微观量子力学场致发射效应等三种理论[6]。

  (1)渗流理论:这一理论认为,当复合体系中导电填料用量增加到某一临界用量时,体系电阻率急剧下降,体系电阻率-导电填料用量曲线出现一个狭小的突变区域,在此区域内导电填料的任何微小变化都会导致电阻率显著变化,这种现象称为渗滤现象,导电填料的临界用量通常称为渗滤阈值。

  (2)隧道效应理论:该理论认为复合体系在导电填料用量较低时,导电粒子间距较大,混合物微观结构中尚未形成导电网络通道,此时仍不具有导电现象。这是因为此时高分子材料的导电性是由热振动电子在导电粒子之间的迁移造成的。隧道效应现象几乎仅仅发生在距离很接近的导电粒子之间,间隙过大的导电粒子之间没有电流传导行为。

  (3)场致发射效应理论:该理论认为,当复合体系中导电填料用量较低,导电粒子间距较大、导电粒子内部电场很强时,电子将有很大几率飞跃树脂界面势垒跃迁到相邻电子离子上,产生场致发射电流,形成导电网络。

  1.2.1 炭黑添加型导电高分子材料

  炭黑不仅价格低廉、导电性能持久稳定,而且可以大幅度调整复合材料的体积电阻率。因此,由炭黑填充制成的复合导电高分子材料是目前用途最广、用量最大的一种导电材料。复合材料导电性与填充炭黑的填充量、种类、粒度、结构及空隙率有关,一般来说粒度越小,孔隙越多,结构度越高,导电性就越强。

  1.2.2 金属添加型导电聚合物

  这类导电塑料具有优良的导电性,比传统的金属材料重量轻、易成型、生产效率高、成本低,进入20世纪80年代后,在电子计算机外壳、罩、承插件、传输带等方面得到应用,成为最年轻、最有发展前途的新型导电和电磁屏蔽材料。常见的金属类导电填充剂有金、银、铜、镍等细粉末。

  2 导电高分子材料的广泛应用

  2.1 在电子元器件开发中的应用

  2.1.1 用于防静电和电磁屏蔽方面

  导电高聚物最先应用是从防静电开始的。将特定比例的十二烷基苯磺酸和对甲苯磺酸混合酸掺杂的PANI与聚(丙烯腈-丁二烯-苯乙烯)树脂(ABS)共混挤出,制备了杂多酸掺杂PANI/ABS复合材料,通过现场聚合的方法在透明聚酯表面聚合了一层导电PANI,表面电阻可控制在106~109 Ω[7]。通过对复合材料EMI屏蔽的研究,发现在101 GHz下,复合材料的屏蔽效能随其中PANI含量的增大而增大。掺杂能提高PANI的屏蔽效能。

  2.1.2 导电高分子材料在芯片开发上的运用

  在各种带有微芯片的卡片以及条码读取设备上,高分子聚合物逐渐取代硅材料。塑料芯片的价格仅为硅芯片的1 %~10 %,并且由于其具有可溶性的特性而更易于加工处理[8]。目前国际上已经研制出集成了几百个电子元器件的塑料芯片,采用这种导电塑料制造的新款芯片可以大大缩小计算机的体积,提高计算机的运算速度。

  2.1.3 显示材料中的导电高分子材料

  有机发光二极管是由一层或多层半导体有机膜,加上两头电极封装而成。在发光二极管的两端加上3伏~5伏电压,负极上的电子向有机膜移动,相反,与有机膜相连的正极上的电子向负极移动,这样产生了相反运动方向的正负电荷载体,两对电荷载体相遇,形成了“电子-空穴对”,并以发光的形式将能量释放[9]。由于它发光强度高、色彩亮丽,光线角几乎达到180度,可用于制造新一代的薄壁显示器,应用在手机、掌上电脑等低压电器上,也应用于金融信息显示上,使图像生动形象,并可图文通显。利用电致变色机理,还可用于制造电致变色显示器、自动调光窗玻璃等。

  2.2 在塑料薄膜太阳能电池开发中的应用

  传统的硅太阳能电池不仅价格昂贵,而且生产过程中消耗大量能源,因此成本昂贵,无法成为替代矿物燃料的能源,而塑料薄膜电池最大的特点就是生产成本低、耗能少。一旦技术成熟,可以在流水线上批量生产,使用范围也很广。制造塑料薄膜太阳能电池需要具有半导体性能的塑料。奥地利科学家用聚苯乙烯和碳掺杂形成富勒式结构的材料,再将它们加工成极薄的膜,然后在膜层上下两面蒸发涂上铟锡氧化物或铝作为电极。由于聚苯乙烯受到光照时会释放出电子,而富勒式结构则会吸收电子,如果将灯泡接在这两个电极上,电子开始流动就会使灯泡发光[10]。

  2.3 在生物材料开发中的应用

  在生命科学领域,导电高分子材料可制成智能材料,用于医疗和机器人制造方面。由于导电有机聚合物在微电流刺激下可以收缩或扩张,因而具备将电能转化为机械能的潜力,这类导电聚合物组成的装置在较小电流刺激下同样表现出明显的弯曲或伸张/收缩能力。为了把聚合物变成伸屈的手指活动,加上了含PPY的三层复合膜[PPY/缘塑料膜/PPY],其中一层PPY供给正电荷,另一层PPY供给负电荷。机器人手指工作:提供正电荷的一侧凹陷进去,即体积收缩;提供负电荷的一侧就鼓胀起来,体积膨胀,引起手指弯曲[11]。用改进的PAN和碳纤维合并起来作为纤维束驱动器,用它制造手指关节链(见图5)其中关节的动作是借助于激光发动和纤维反抗成对的推拉控制,是由改变pH来激发动作的,并有激发纤维和反抗纤维的数量来控制位置[12]。

  最新研究表明,DNA也可以具有导电性,因此,把导电塑料与生命科学结合起来,可以制造出人造肌肉和人造神经,以促进DNA的生长或修饰DNA,这将是导电塑料在应用上最重要的一个趋势。

  2.4 在新型航空材料开发中的应用

  航空制造所用复合材料是一种聚合体树脂制成的矩阵结构,由耐热性能良好的增强型碳素纤维层或者玻璃纤维层胶合而成,再利用熔炉打造成所需要的形状,以适应不同零件所承受的压力。另外,像聚苯胺、聚吡咯可用于电磁屏蔽,涂有其聚合纤维的飞机,能吸收雷达信号,使飞机隐身,还可排除雷击的危险。在导弹外面裹上一层这类聚合物,不仅可防止产生静电,还可减轻导弹的重量[13]。

  3 导电高分子材料的研究进展

  20世纪70年代以来,电子、电气、通讯产业的迅速崛起,推动了导电材料的快速发展。随着导电材料使用环境的变化,对导电材料的发展也提出了新的要求。总体来说,导电高分子材料的发展主要围绕以下几个方面:

  (1)开展分子水平上的研究和应用,开发新品种导电材料,尤其是高导电性导电聚合物、高强度导电高分子材料、可溶性导电高分子材料和分子导电材料,以便能够制成“分子导线”、“分子电路”和“分子器件”。

  (2)研究设计和合成结构高度稳定的、具有高荧光量子效率和高电荷载流子迁移率的共轭聚合物,制备出结构有序的导电聚合物薄膜材料[14]。

  (3)导电材料多功能化。除具有导电性能外,还应具有优良的阻燃性、阻隔性、耐高温、耐腐蚀、耐摩擦等性能,并在加大导电填料用量以提高导电性能的前提下,如何保持或增强复合材料的成型加工性能、力学性能和其他性能。

  导电高分子材料的这些发展趋向预示着一个新的塑料电子学时代即将到来。

  参考文献:

  [1]包咏.聚乙炔导电性介绍[J].大学化学,2003,18(5).

  [2]韦玮,张晓辉.聚对苯撑掺杂和导电性能研究[J].功能高分子学报,1998,(6).

  [3]王红敏,梁旦.聚噻吩/多壁碳纳米管复合材料结构与导电理论的研究[J].化学学报,2008,(20).

  [4]周媛媛,李松等.导电高分子材料聚吡咯的研究进展[J].化学推进剂与高分子材料,2008,6(1).

  [5]聂玉静,程正载.聚苯胺的合成及改性研究现状[J].化工新型材料,2010,38(3):19.

  [6]孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品,2009,30(3):73~75.

  [7]张柏宇,苏小明等.聚苯胺导电复合材料研究进展及其应用[J].石化技术与应用,2004,22(6).

  [9]李俊玲.神通广大的导电塑料[J].百科知识,2005,(6):14~15.

  [10]应仕杰.应用潜力极大的导电塑料[J].广东塑料,2005,(12):9.

  [11]李新贵,张瑞锐等.导电聚合物人工肌肉[J].材料科学与工程学报,2004,22(1):130~131.

  [12]王锦成, 李龙等.高分子材料的智能性及其应用合成技术及应用[J].合成技术及应用,2004,16(4).

  [13]王敏.导电塑料的应用前景[J].化工生产与技术,2002,9(2).

  [14]李永舫. 导电聚合[J]. 化学进展,2002,(3).

  跟材料学有关的论文篇2

  浅析高分子材料成型加工技术

  摘要:随着经济和科技的飞速发展,人民生活水平不断的提高。人们对塑料制成品的需求越来越高,尤其是在塑料制成品的种类和质量上。而随着一种高分子材料成型加工技术的出现和飞速发展,高分子材料也倍受人们关注,其在一定程度上促进了我国国防,航空等相关领域工业技术的发展。从应用角度来说高分子材料成型加工技术的使用价值是通过制造成各种制品来实现的,因其在材料形状上的特殊功能,使得其对成型加工技术有着重要的意义。

  关键词:高分子材料;成型加工

  0 前言

  随着工业化技术的发展和人民生活水平的提高,人们对塑料产品种类和质量的需求也越来越高。高分子材料是通过制造成各种制品来实现其使用价值的,因此从应用角度来讲,以对高分子材料赋予形状为主要目的成型加工技术有着重要的意义。高分子材料的主要成型方法有挤出成型、注射成型、吹塑成型、压延成型等,文章综述了高分子材料成型加工技术的最新进展。

  1 高分子材料成型加工技术发展概况

  近年来,高分子合成工业取得了很大的进展。如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。合成工业的新近避震使得易于控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要,汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

  2 高分子材料的主要成型方法

  高分子材料的主要成型方法有挤出成型,吹塑成型,注射成型等。下面逐一叙述:

  2.1挤出成型

  挤出成型主要是利用螺杆旋转加压方式,连续地将塑化好的成型物料从挤出机的机筒中挤入机头,熔融物料通过机头口模成型为与口模形状相仿的型坯,用牵引装置将成型制品连续地从模具中拉出,同时进行冷却定型,制得所需形状的制品。挤出成型主要包括加料、塑化、成型、定型等过程。要获得外观和内在质量均优良的型材制品,是与原材料配方、挤出设备水平、机头模具设计与加工精度、型材断面结构设计及挤出成型工艺条件等分不开的。挤出成型工艺参数的控制包括成型温度、挤出机工作压力、螺杆转速、挤出速度、牵引速度、排气、加料速度及冷却定型等。挤出工艺条件又随挤出机的结构、塑料品种、制品类型、产品的质量要求等的不同而改变。

  2..2吹塑成型技术

  吹塑,这里主要指中空吹塑是借助于气体压力使闭合在模具中的热熔型坯吹胀形成中空制品的方法,是第三种最常用的塑料加工方法,同时也是发展较快的一种塑料成型方法。吹塑用的模具只有阴模(凹模),与注塑成型相比,设备造价较低,适应性较强,可成型性能好(如低应力)、可成型性能好(如低应力),可成型具有复杂起伏曲线(形状)的制品。吹塑成型加工的三种主要方法是:挤出吹塑成型,注塑吹塑成型和拉伸吹塑成型。

  2.3注塑成型技术

  注射成型技术是目前塑料加工中最普遍采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件。由于它具有应用面广、成型周期短、花色品种多、制件尺寸稳定、产品效率高、模具服役条件好、塑料尺寸精密度高、生产操作容易、实现机械化和自动化等诸方面的优点。因此,在整个塑料制件生产行业中,注射成型占有非常重要的地位。目前,除了少数几种塑料品种外,几乎所有的塑料(即全部热塑性塑料和部分热固性塑料)都可以采用注塑成型。

  3 现今高分子材料成里加工技术的创断研究

  3.1聚合物动态反应加工技术及设备

  聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸醋连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

  3.2以动态反应加工设备为基础的新材料制备新技术

  (1)信息存储光盘直接合成反应成型技术。

  此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酷交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

  (2)热塑性弹性体动态全硫化制备技术。

  此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化。解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

  4 高分子材料成型加工技术的发展趋势

  随着科学技术的发展,国防、航空航天、电子电气工程、医药、纺织、日用化工等高新技术领域对高分子材料应用方面的要求越来越高,高分子合成材料的开发研制已成为人们关注的热点,它的发展成果将带动有机化工、交通运输、日用化工、电气电子工业等相关工业和行业的发展。高分子材料在工业、农业、航空航天、国防中甚至在人们的日常生活中占有重要的地位。

  高分子材料不但改变了人们对传统材料的观念更给人们的生活带来了便利因此,人们把二十世纪中期高分子材料出现的时代称为人类开始进入高分子时代。近年来全世界各种高分子材料加工技术的高聚物的生产总量接近钢的生产规模已超过6400多万吨。如果按体积计算的话它已远远超过金属的总产量,究其原因主要还是高分子材料的比重小。百年的历史经验再次证明了,要使有价值的想法变成现实,只有类似于高分子材料技术的新的技术的出现,才能改变传统想法。

  5结语

  为了跟上国际化学工程学科发展的步伐,我国把“聚合过程工程”与“聚合物产品工程”定为高分子材料成型技术的研究方向。秉着实事求是的原则并结合我国国情要求我们要借鉴国外先进研究成果在打破国外的技术垄断和封锁的基础上创新,实现有跟踪向跨越的转变;增强自主知识产权意识,把握最新前沿科技。走出一条发展高分子材料成型加工技术具有中国特色的道路。促进科学研究成果与实践的结合,加快创新技术转化为社会生产力的步伐,从而进一步我国高分子材料成型加工高新技术的创新及其产业的可持续发展。

  参考文献

  [1] 杨帆.浅析高分子材料成型加工技术[J].应用科学,2008,66.

  [2] 黄贵禹.高分子材料成型技术[J].塑料工业,2011,97.

  [3] 高峰.塑料成型加工实用技术讲座(第七讲)塑料异型材的挤出成型[J].工程塑料应用,2003,31(9):58-62.
猜你喜欢:

1.关于材料学方面论文

2.有关材料类论文范文

3.有关材料管理论文

4.材料方面论文

5.国内材料学学术论文

3010623