学习啦 > 论文大全 > 技术论文 > 材料制备新技术论文

材料制备新技术论文

时间: 家文952 分享

材料制备新技术论文

  材料制备新技术使制备工艺效率及质量均得到有效提高,这是学习啦小编为大家整理的材料制备新技术论文,仅供参考!

  材料制备新技术论文篇一

  ZnO纳米半导体材料制备

  摘 要:文章阐述了一些制备ZnO纳米半导体材料的常用技术,如模板制备法、物理气相沉积、脉冲激光沉积、分子束外延、金属有机化合物气相沉积,并分析了各种方法的优缺点。

  关键词:ZnO;模板制备法; PVD; PLD; 金属有机化合物气相沉积

  随着 科学和商业的飞速 发展,人们对纳米半导体材料有了更加深入的认识,对其在光学器件和电学器件方面的应用产生了浓厚的兴趣。最初人们在研究ZnSe和GaN等短波长纳米半导体材料方面取得了一定的进展, GaN制备蓝绿光LED的技术已经相当成熟。但是,由于ZnSe稳定性较差,一直使之无法商品化生产。在长期的对宽带半导体材料的科学研究中,人们发现ZnO半导体纳米材料具有更多的优点。ZnO是一种新型的宽禁带半导体氧化物材料,室温下能带宽度为3.37eV,略低于GaN的3.39eV,其激子束缚能(60 meV)远大于GaN(25 meV)的激子束缚能。由于纳米ZnO在紫外波段有较强的激子跃迁发光特性,所以在短波长光子学器件领域有较广的应用前景。此外,ZnO纳米半导体材料还可沉积在除Si以外的多种衬底上,如玻璃、Al2O3、GaAs等,并在 0.4-2μm 的波长范围内透明,对器件相关电路的单片集成有很大帮助,在光电集成器件中具有很大的潜力。本文阐述了近年来ZnO纳米半导体材料的制备技术,并对这些技术的优缺点进行了分析。

  ZnO 是一种应用较广的半导体材料,在很多光学器件和电学器件中有很广泛的应用,由此也产生了多种纳米半导体器件的制备方法,主要有以下几种:

  1模板制备法

  模板制备法是一种用化学方法进行纳米材料制备的方法,被广泛地用来合成各种各样的纳米棒、纳米线、纳米管等。此种方法使分散的纳米粒子在已做好的纳米模板中成核和生长,因此,纳米模板的尺寸和形状决定了纳米产物的外部特征。科学家们已经利用孔径为40 nm和20 nm左右的多孔氧化铝模板得到了高度有序的ZnO纳米线。郑华均等人用电化学阳极氧化-化学溶蚀技术制备出了一种新型铝基纳米点阵模板,此模板由无数纳米凹点和凸点构成,并在此模板上沉积出ZnO纳米薄膜。此外,李长全、傅敏恭等人以十二烷基硫酸钠为模板制备出ZnO纳米管。该方法优点:较容易控制纳米产物的尺寸、形状。缺点:需要模板有较高的质量。

  2物理气相沉积(PVD)

  物理气相沉积可以用来制备一维ZnO纳米线和二维ZnO纳米薄膜,原理是通过对含Zn材料进行溅射、蒸发或电离等过程,产生Zn粒子并与反应气体中的O反应,生成ZnO化合物,在衬底表面沉积。物理气象沉积技术已经演化出三种不同的方法,它们是真空蒸发法,真空溅射法和离子镀,离子镀是目前应用较广的。离子镀是人们在实践中获得的一种新技术,将真空蒸发法和溅射法结合起来,在高真空环境中加热材料使之汽化后通入氢气,在基体相对于材料间加负高压,产生辉光放电,通过电场作用使大量被电离的材料的正离子射向负高压的衬底,进行沉积。张琦锋、孙晖等人用气相沉积方法已经制备出了一维ZnO纳米半导体材料。优点:所得到的纳米产物纯度高,污染小;薄膜厚度易于控制;材料不受限制。但是这种方法对真空度要求较高。

  3脉冲激光沉积(Pulsed Laser Deposition)

  脉冲激光沉积也称PLD,常用于纳米薄膜的制备。其工作原理就是用特定波长和功率的激光脉冲聚焦光束,溅射真空状态下特定气压中的加热靶材,激光束与靶材相互作用而产生的粒子团喷射到衬底表面,通过控制气流速度控制材料在衬底表面的沉积速度。牛海军等人用一种新颖的垂直靶向脉冲激光沉积(VTPLD)方法,在常温常压空气环境下,在玻璃基底上得到ZnO纳米薄膜。该方法优点:制备的薄膜物质比例与靶材相同;实验控制条件较少,易于控制;衬底温度要求较低。缺点:薄膜杂志较多;单纯溅射产生的粒子团密度不易控制,因此无法大面积生长均匀的薄膜。

  4分子束外延(Molecular Beam Epitaxy)

  分子束外延(MBE)技术可以制备高质量薄膜。MBE技术可以在特定超高真空条件下较为精确的控制分子束强度,把分子束入射到被加热的基片上,可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。分子束外延设备主要包括超高真空系统、分子束源、样品架、四极质谱计QMS和反射式高能 电子衍射装置RHEED。周映雪等人利用分子束外延(MBE) 和氧等离子体源辅助MBE方法分别在三种不同衬底硅(100)、砷化镓(100)和蓝宝石 (0001)上先制备合适的缓冲层,然后在缓冲层上得到外延生长的ZnO薄膜。该方法优点:生长速度极慢,每秒1~10;薄膜可控性较强;外延生长所需温度较低。缺点:真空环境要求较高;无法大量生产。目前常用于生长高质量的ZnO薄膜分子束外延有两种:一种是等离子增强,另一种是激光,两种方法均已生长出高质量的ZnO 薄膜。

  5金属有机化合物气相沉积( Metal Organic Chemical Vapor Deposition):

  金属有机化合物气相沉积(MOCVD)是一种利用有机金属在加热衬底上的热分解反应进行气相外延生长薄膜的方法。反应室是MOCVD 的核心部分,它对外延层厚度、组分均匀性、异质结界面梯度、本底杂质浓度以及产量有极大的影响。按反应室形状的不同,可分为水平式反应室和立式反应室,同时根据反应室的压力又可分为常压 MOCVD 和低压MOCVD。刘成有利用MOCVD方法制备出高质量的ZnO薄膜。在一定衬底温度及压强下,制备出ZnO纳米管。该方法优点是: 薄膜可控性较强;适合大批量生产。其缺点有:需精确控制;传输气体有毒性。但目前不仅利用 MOCVD 法已生长出较高质量的 ZnO 薄膜,而且还获得了 MgZnO 三元系薄膜。

  除上述纳米材料的常用制备技术,还有很多其他方法。随着科技的 发展和高质量纳米产品的需求,人们对纳米半导体材料的研究会更加深入,对其生长机理理解的更为透彻,随之纳米半导体材料制备技术将不断地发展和完善。高质量纳米半导体产品会不断出现,并被广泛的应用于人们的生活中。

  参考 文献:

  [1]谢自力,张荣,修向前,等.GaN纳米线材料的特性和制备技术[J].纳米技术与精密工程,2004,2(3):187-192.

  [2]张利宁,李清山,潘志峰.模板合成法制备ZnO纳米线的研究[J].量子电子学报,2006,(4).

  [3]李长全,傅敏恭.十二烷基硫酸钠为模板制备ZnO纳米管新方法的研究[J].无机化学学报, 2006,(9).

  [4]张琦锋,孙晖,潘光虎,等.维纳米结构氧化锌材料的气相沉积制备及生长特性研究[J].真空 科学与技术学报,2006,26(1).

  [5]牛海军,樊丽权,李晨明,等.垂直靶向脉冲激光沉积制备ZnO纳米薄膜[J].光电子•激光 2007,18(3).

  [6]周映雪,俞根才,吴志浩,等.ZnO薄膜的分子束外延生长及性能[J].发光学报,2004,(3).

  [7]刘成有.MOCVD法生长ZnO纳米管及光学性能评价[J].通化师范学院学报,2007,28(4).

  [8]鞠振刚,张吉英,蒋大勇.MOCVD生长MgZnO薄膜及太阳盲紫外光电探测器[J].发光学报, 2008,(5):865-868.

  材料制备新技术论文篇二

  纳米材料制备方法研究

  摘要:介绍了几种纳米材料的物理和化学制备方法,并对不同方法的优劣进行了讨论。

  关键词:纳米材料;物理方法;化学方法

  1引言

  纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的 科学 。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的 应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、 机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的 自然 科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1ding Blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

  2纳米材料的合成与制备方法

  2.1物理制备方法?

  2.1.1机械法?

  机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

  2.1.2气相法?

  气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、 电子 束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有 文献 报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

  2.1.3磁控溅射法与等离子体法?

  溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的 发展 ,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

  以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

  2.2化学制备方法?

  2.2.1溶胶—凝胶法?

  溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。Marcus Jones等以CdO为原料,通过加入Zn(CH?3)?2和S[Si(CH?3)?3]?2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,QY)为13.8%。

  2.2.2离子液法?

  离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成 环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

  2.2.3溶剂热法?

  溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S?2P(OC?8H??17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi?2S?3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的Bi2S3纳米带。

  2.2.4微乳法?

  微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

  4结论

  纳米材料由于具有特异的光、电、磁、催化等性能,可广泛 应用于国防军事和民用 工业 的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和 发展 材料 科学 领域的基础理论。

  参考 文献

  [1]Lu Y,Liaw P K,The mechanical properties of nanostructured materials.JOM,2001,53(3):31.

  [2]Gary Stix,微观世界里的大科学,科学,2001,(12):18?20.

  [3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[J].物理化学学报,2005,2(11):1254?1288..

  [4]李英品,周晓荃,周慧静,等.纳米结构MnO?2的水热合成、晶型及形貌演化[J].高等学校化学学报,2007,28(7):1223?1226..

  [5]Ledenstoy N N,Crystalline growth characteristics,Mater Prog,1998,35(2?4):289.

  [6]王结良,梁国正,纳米制备新技术研究进展[J].河南化工,2003,(10):7?l0.

  [7]王林等:纳米材料在一些领域的应用及其前景[J].纳米科技,2005,(4),6?90.

  [8]刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[J].化学工程师,2001,(5):21?22.

  [9]姚斌,丁炳哲,纳米材料制备研究[J].科学通报,1994,39:1656.

  [10]刘海鹏等:纳米技术及其在精细化工中的应用[J].纳米科技,2005,(4),18?20,360.

  [11]张万忠,李万雄,纳米材料研究综述[J].湖北农学院学报,2003,23(5):397?340.

  [12] Takaki S,Yatsuya S.Nanoparticle produced by sputtering[C]//14th International Congress on Electron Microscopy[J].Cancun,Mexico:[s.n] 1998:469?470..

  [13]杜芳林,崔作林,张志锟,等.纳米铜的制备、结构及催化性能[J].分子催化,1997,18(3):46?48..

  [14]魏胜,王朝阳,黄勇,等.蒸发冷凝法制备纳米Al粉及其热反应特性研究[J].原子能科学技术,2002,36(4):367?370..

  [15]张立德,纳米材料研究简介[J].物理教学,2001,23(1):2?5.

  [16]苏品书,超微粒子材料技术[J].湖北:武汉出版社,1989:56.

  [17]王泽红等:CASO晶须制备技术及应用研究[J].矿冶,2005,(2),38?41.

  [18]戴静等:硼酸盐晶须在复合材料中的应用[J].化工矿物与加工,2005,(10),36?38,.

  [19]Jiang Jie,Yu Shuhong,Yao W Eitang,et al.Morphogenesis and crystallization of Bi2S3.nanostructures by an ionic liquid?assisted templating route:synthesis,formation mechanism,and properties[J].Chem.Mater.,2005,17(24):6094?6100..

  [20]靳刚:纳米生物技术和纳米 医学[J].纳米科技,2005,(3),2?5.

  [21]梁勇:纳米微料在医学中的应用[J]. 中国 粉体工业,2005,(3),3?5.

  [22]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[J].无机化学学报,2007,23(5):839?843..

  [23]刘跃进,李振民,水热法合成云母氧化铁结晶条件[J].化 工学报,2004,55(5):20.

  [24]张立德,纳米材料与纳米结构[J].北京:化学工业出版社,2000.

  [25]顾惕人,朱步瑶等.表面化学[M].北京:科学出版社,1994.

  [26]Lou Wenjing,Chen Miao,Wang Xiaobo,et al.Novel single?source precursors approach to prepare highly uniform Bi2S3 and Sb2S3 nanorods via a solvothermal treatment[J].Chem.Mater.,2007,19(4):872?878..

  [27]Liu Zhaoping,Liang Jianbo,Li Shu,et al.Synthesis and Growth Mechanism of Bi2S3 Nanoribbons[J].Chem.Eur.J.,2004,10(3):634?640..

  [28]陈为亮等:化学还原法制备纳米银粉的研究[J].纳米科技,2005,(4),37?40.

  [29]张登松,施利毅,纳米材料制备的若干新进展[J].化学工业与工程技术,2003,24(5):32?36.

  [30] Zhang W EIxin,Yang Zeheng,Huang Xinmin,et al.Low temperature growth of bismuth sulfide nanorods by a hydrothermal method[J].Solid State Commun.,2001,119(3):143?146..

  [31]张登松,施利毅,纳米材料制备的若干新进展[J].化学工业与工程技术,2003,24(5):32?36

2123092