简易方程教学反思发范文【汇总】
时间:
志艺942由 分享
简易方程教学反思发范文【汇总】
记得我以前上学的时候,解最简单的方程的方式是这样的:比如x+5=8就是x=8-5,x=3。下面是学习啦小编为大家收集的简易方程教学反思发范文【汇总】,望大家喜欢。
简易方程教学反思范文一
本课为人教版第四单元教学内容,本教材解方程方法利用了天平平衡的原理,采用了等式的性质来教学解方程。形如x±a=b一类的方程利用等式的基本性质一学生很容易解决,形如ax=b与x÷a=b一类的方程,利用等式的基本性质二学生也很容易解决。但行如a-x=b和a÷x=b此类的方程,学生就无从下手了,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦。解决问题时当需要列出形如a-x=b或a÷x=b的方程时,我就要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我觉得回避这两类问题不是很好的方法,否则,我们的教学就会显得片面和狭隘。如:一共有128人平均分成Х组,每组8人,学生们都不假思索地列出了128÷x=8,但是利用等式的基本性质学生就不会解,但你也不能说这个方程列错了呀。
因此我当有学生列了a-x=b或a÷x=b的方程时,我借机教了利用算术思路解方程(被减数=差+减数,被除数=商*除数)介绍老板教材的解方程的方法。基础好的孩子就容易接受新的方法,而基础差的孩子就还是无法解答此类问题。
另外教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。 因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。
看来教材利用等式的基本性质来解简易方程也是存在着一些问题,不知各位老师有什么好的方法来解决这些问题呢?请不吝赐教!
简易方程教学反思范文二
记得我以前上学的时候,解最简单的方程的方式是这样的:比如x+5=8就是x=8-5,x=3。那时觉得很好懂,但是现在五年级课本上是这样的: x+5=8,x+5-5=8-5,x=3。看起来比较复杂。开始接触到这个课程时看到教材例题中的解法感觉很疑惑,百思不得其解。为什么新课程的“解方程”教学要“绕远路”?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。那教材这样改的目的是什么呢?深入研究教参后我体会很深,明白了新课程数学教学要 “瞻前顾后”的道理。
新课程的改革,更加注重知识的迁移和联系,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的。新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。所以虽然复杂,但是更容易掌握。
简易方程教学反思范文三
在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
在学习中,我以多媒体中天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
二、等式性质解方程——初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑
1、从教材的编排上,整体难度下降,有意避开了,形如:45—X=23 24÷X =6等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。
简易方程教学反思范文四
在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用加减乘除各部分之间的关系来求出方程中的未知数,而今的人教版 教材的设计打破了传统的教学方法,而是借用天平使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样就能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。在这节课的教学中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
1、在学习中,我以天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉比较抽象,我引导学生在反复操作中理解加、减一个数的目的和依据。
我在天平的左侧放5克砝码,右侧也放5克砝码。(抛砖引玉)
2、学生亲自动手反复不断的进行操作。(学生动手操作)
在此基础上,我再做进一步的引导。
活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。
3、教师:请同学们都想一想,如果天平两侧都减去相同的质量,天平会出现什么现象?你能列出几个这样的方程吗?(学生同桌之间通过充分地交流,反馈交流结果,学生得知,如果我们把天平作为一个等式(当天平平衡时)的话,等式的两边都减去同一个数,等式仍然成立。通过引导,学生能完全得出了等式的性质。最后我们通过学生自己的整理和总结,把以上发现的性质合二为一。得出:等式的两边都加上(或减去)同一个数,等式仍然成立。
二、利用 等式性质解方程-—— 初步感悟它的妙用
在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。
在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。
告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,但我认为利用等式 性质解方程的方法单一化,内容虽少问题很多。其表现在:
1、从教材的编排上,整体难度下降,有意避开了形如:66—2X=30等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X在后面的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程吗?我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充X在后面的方程的解法。要教他们列方程时怎么避免X在后面这样方程的出现等等。因此,我干脆就又把原来的老方法交给同学们,以便备用或请他们根据具体情况选择适当的解题方法。
3、我个人认为:现行教材的某些地方还有待于进一步的改进与完善。
简易方程教学反思范文五
很多时候,我们大人都喜欢用方程来解题,这固然是因为到了中学大量学习了各种各样的方程,一元一次,一元二次,二元一次等等,但还有一个更重要的原因就是方程对解题思路的解放,列算式解决实际问题时,解题思路常常迂回曲折,而他从根本上让学生脱离了繁琐的思路分析,而列方程解决实际问题,解题思路往往直截了当,降低了思维难度,它让学生从一个简单的思路——找等量关系来解题。所以说,这个单元的知识如何教好,从而让学生学好是非常重要的。
一、用字母表示数要注意对数量关系的理解
用字母表示数是学生学习代数初步知识的起步。在算术里,人们只对一些具体的、个别的数量关系进行研究,引入用字母表示数后,就可以表达、研究具有更普遍意义的数量关系。可以说,学习代数就是从学习用字母表示数开始的。
对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,而由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。而在老师们的教学实践中,由于在进行用方程解题时格式非常重要,因此往往老师们教学时都会特别强调格式。可是从学生的后续学习来看,我慢慢发现,其实在教学这一部分知识时,老师要注重学生对数量关系的理解,也就是说要加强对学生的用含字母的式子表示数量的训练,也就是写代数式的训练。因为这是列方程的基础。所以,在这里教师一定要向学生强调并反复练习用含有字母的式子表示数量,让学生明白以往学习的所有数量关系在用含有字母的式子表示数量中都能用到。如:原来有100元,用掉X元,一样的要用减法求还剩下多少钱,买了3个练习本,每个A元,一样的用乘法来求一共要多少钱。让学生在这样的大量的练习和强化中,知道含有字母的式子的数量关系和以前是一样的,只是现在所用的符号不一样,其实,从广义上来讲,字母是一种符号,数字也是一种符号。
二、注重方程的意义的教学。
方程是什么,教材中是这样说的,含有未知数的等式叫做方程。其实,这只是从方程的表现形式来给方程下定义。 也就是说,从表象上来说,如果一个式子是一个等式,并且含有未知数,我们就说这个式子是方程。但是,从数学的本质上来说,方程的意义是什么呢?我们每个人都能够熟练地列方程解决问题,那么,在你列方程解决问题时,你每次抓住的核心是什么呢?是等量关系。所以,方程最本质的教学意义应是同一个量(或相等的量)用不同的形式去表达。但很多时候,老师们在教学方程的意义时,往往只研究了方程的表面形式,也就是书上所说的:含有未知数的等式叫方程,所以,老师们一般都是从等式入手,让学生在认识等式的基础上引入未知数,然后告诉学生,象这样的含有未知数的等式叫方程。这样一节课教下来,学生除了会判断一个关系式是不是方程,还知道了什么呢?这样的学习对于后面的列方程解决问题真的有帮助吗?我想,每个人静下心来想想,应该都会有答案。
三、解方程的教学时不要被以前的教材编排所影响。
新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,当然,在教材上并没有归纳出等式的性质,毕竟,在学生的小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立,这并不是完整意义上的等式的性质。从学生的学习上来看,我觉得学生是比较容易接受这种方法的,特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,这也许是我在教学这一部分内容时,因为总是考虑到学生不喜欢列方程(以往的学生都有这个问题,可能就是觉得方程的格式繁琐,好像步骤也不少,学生总不喜欢),所以,我就想怎么让学生少写点字,所以,在具体的书写格式和步骤上,和教材稍微有点不同,我没有象教材那样写出怎样应用等式的性质的那一步,而是让学生直接写出这一步的结果,以至于到了后面,有部分学生就出现了一些问题,特别是象5(X+3)=55这样的方程,学生掌握得比较差,也可能是学生在用含有字母的式子表示数量时,还是没有很好地建立这样的一个式子是一个整体,表示一个数量这样的概念,尽管也进行了一些强调。另一个方面就是具体的步骤可能也对学生有影响,所以,我个人认为,可能让学生按照书上的步骤来写尽管麻烦一点,但对于学生理清思路可能更有帮助。
总的来说,我觉得简易方程这个单元,只要让学生有很好地用字母或含有字母的式子表示数的基础,再加上对方程的本质意义有清晰的理解,知道怎样解方程,其他的应该都不是问题,毕竟,上面的这些都是为列方程解决问题打基础。基础打好了,后面的问题就都能能迎刃而解了。
简易方程教学反思发范文【汇总】相关文章: