人教版初中数学教学教案有哪些
教案是教师对一节课的整体设想,创造性的教学设计,严谨、科学、有序的教学策略,能够有效的提高教学效率。因此,下面是学习啦小编分享给大家的人教版初中数学教学教案的资料,希望大家喜欢!
人教版初中数学教学教案一
轴对称复习
教学目的
1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点
判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程
一、知识回顾
问题1:轴对称图形的定义是什么?
它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?
找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?
轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?
线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?
等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。
问题6:如何判断三角形是等腰三角形?等边三角形?
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。
二、例题
1.下列图案是轴对称图形的有( )
A.1个 D.2个 C.3个 D.4个
2.如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么
(1)∠DEF与∠DFE相等吗?为什么?
(2)OE与OF相等吗?为什么?
三、巩固练习
如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″.求△BCD的周长和∠DBC度数。
四、课堂小结
通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,
五、作业
人教版初中数学教学教案二
绝对值与相反数
学习目标:1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2.会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
1、
2、
-5的相反数是______,-10.5的相反数是______, 的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
1、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1. 求下列各数的绝对值:
+9,-16,-0.2,0.
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-10.12与-5.2的大小。
例3.求6、-6、14 、-14 的绝对值。
小节与思考:
这节课你有何收获?
四.练习
1. 填空:
⑴ 的符号是 ,绝对值是 ;
⑵10.5的符号是 ,绝对值是 ;
⑶符号是“+”号,绝对值是 的数是 ;
⑷符号是“-”号,绝对值是9的数是 ;
⑸符号是“-”号,绝对值是0.37的数是 .
2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).
请指出哪个足球质量最好,为什么?
第1个 第2个 第3个 第4个 第5个 第6个
-25 -10 +20 +30 +15 -40
3.比较下面有理数的大小
(1)-0.7与-1.7 (2) (3) (4)-5与0
五、布置作业:
P25 习题2.3 5
家庭作业:《评价手册》 《补充习题》
六、学后记/教后记
人教版初中数学教学教案三
绝对值与相反数教学案
【学习目标】
1.使学生能说出相反数的意义
2.使学生能求出已知数的相反数
3.使学生能根据相反数的意思进行化简
【学习过程】
【情景创设】
回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。
观察A,B两点位置及共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?
‐5与5,‐6.1与6.1,‐34 与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)
规定0的相反数是0
想一想:你能举出互为相反数的例子吗?
【例题精讲】
例1
例2
试一试: 化简―[―(+3.2)]
想一想:
请同学们仔细观察这五个等式,它们的符号变化有什么规律?
把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正.
练一练:填空
(1)-2的相反数是 ,
3.75与 互为相反数,
相反数是其本身的数是 ;
(2)-(+7)= ,
-(-7)= ,
-[+(-7)]= ,
-[-(-7)]= ;
(3)判断下列语句,正确的是 .
① ―5 是相反数;
② ―5 与 +3 互为相反数;
③ ―5 是 5 的相反数;
④ ―5 和 5 互为相反数;
⑤ 0 的相反数还是 0 .
选择:
(1)下列说法正确的是 ( )
A.正数的绝对值是负数;
B.符号不同的两个数互为相反数;
C.π的相反数是 ―3.14;
D.任何一个有理数都有相反数.
(2)一个数的相反数是非正数,那么这
个数一定是 ( )
A.正数 B.负数 C.零或正数 D.零
画一画:
在数轴上画出表示下列各数以及它们的相反数的点:
动脑筋:
如果数轴上两点 A、B 所表示的数互为相反数,点 A 在原点左侧,且 A、B 两点距离为 8 ,你知道点 B 代表什么数吗?
【课后作业】
1.判断题
(1) 0没有相反数。 ( )
(2)任何一个有理数的相反数都与原来的符号相反。 ( )
(3)如果一个有理数的相反数是正数,则这个数是负数. ( )
(4)只有0的相反数是它本身 ( )
(5) 互为相反数的两个数绝对值相等
2.填空题
(1) -(-2.8)= _________; -(+7)= _________;
(2) -3.4的相反数是 ________.
(3) -2.6是________的相反数.
(4)│-3.4│=________;│5.7│=________;
-│2.65│=_______;-│-12.56│=_______
(5)绝对值等于5的数是_________
(6)相反数等于本身的数是__________
3.化简:
(1) -(-1966)=______ (2) +│-1978│=______(3)+(-1983)=______
(4) -(+1997)=_______ (5) +│+2003│=______
4、选择题:
(1)在-3、+(-3)、-(-4)、-(+2)中,负数的个数有( )
A、1个 B、2个 C、3个
(2)在+(-2)与-2、-(+1)与+1、-(-4)与+(-4)、
-(+5)与+(-5)、-(-6)与+(+6)、+(+7)与+(-7)
这几对数中,互为相反数的有( )
A、6对 B、5对 C、4对 D、3对
5、在数轴上标出3、-2.5、2、0、 以及它们的相反数。
6、请在数轴上画出表示3、-2、-3.5及它们相反数的点,并分别用A、B、C、D、E、F来表示
(1)把这6个数按从小到大的顺序用<连接起来
(2)点C与原点之间的距离是多少?点A与点C之间的距离是多少?
猜你喜欢:
3.初中数学教学教案
4.初中数学教案