新人教版五年级数学复习教案有哪些
新人教版五年级数学复习教案有哪些
教案是老师为讲授新一课而做的教学设计和设想,那么新人教版五年级数学复习教案有哪些?下面是学习啦小编分享给大家的五年级数学复习教案,希望大家喜欢!
五年级数学复习教案一
教学准备
教学目标
1、使学生理解众数的意义和作用,会找一组数据的众数。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征,培养学生独立思考、合作的能力。
3、初步体会平均数、中位数、众数的区别。
4、体会众数在生活中的广泛应用,培养学生的学习兴趣。
教学重难点
教学重点:理解众数的意义和作用。
教学难点:初步体会平均数、中位数、众数的区别,能针对不同情境正确选择统计量表示。
教学工具
课件
教学过程
一、创设情境,认识众数
师:同学们,在上数学课之前,老师想了解你们填写成语的能力,大家想一想表现给老师看看。请看屏幕:( )所周知 万( )一心 ( )志成城
师:三个成语都有一个相同的字,那就是“众”
“众”的含义是什么?(是大多数的意思)
师:同学们的语文基础知识还挺扎实的,这节课我们所学的内容就跟“众”字有关。
师:同学们,在上新课之前老师有个小小的要求,就是同学们手上的计算器在还没用到之前我们先不去碰它,能做得到吗?
师:同学们,你们每个人都喜欢体育运动吗?
生:喜欢。
师:喜欢体育运动是一件非常好的事。因为它能让人强身健体。
老师发现,我们很多学生特别喜欢打篮球,而且他们的球技也不错,老师这儿有一组学生的投篮练习成绩,请看屏幕:
10个学生每个学生投10个球,练习成绩如下:单位(个)
5 5 6 1 5 2 5 5 5 5
你们能同桌合作,算出这组数据的平均数和中位数吗?
平均数是:4.4 中位数是: 5
师:你们是怎样算出平均数呢?
生:把一组数据的所有数加起来再除以个数,就得到.师:大家也是这样算吗?
师:这么说平均数和一组数据的所有数都关系,反映是的一组数据的整体水平。(板书:平均数 整体水平 和所有数据有关)
师:中位数呢,你们又是怎么求?
生:(5+5)÷2=5
师:说得真好,大家也是这样求吗?你们在求出中位数前,是先怎样整理这组数据?
生:按大小排列顺序。
师:这么说中位数和数据的排列位置有关,因为中位数处于一组数据的中间位置,所以它反映的是这组数据的什么水平?它不受偏大或偏小数据的影响。(中等水平或一般水平)(板书:中位数 一般水平或(中等水平) 和数据的排列位置有关)
师;你认为用哪种统计量表示这组数据的水平比较合适?知道是为什么吗?
(生:用中位数5表示这组数据的的成绩比较合适,因为大部分同学投篮的个数集中在5个。而平均数4.4明显地比大部分数据小,因为受到偏小数1和2的影响.在这组数据中偏低了.)
4、课件出示 观察这组数据,认识众数。
师:刚才我们一起回忆了平均数,中位数的知识。在统计中平均数,中位数能够反映一组数据的状况。除了它们,还有一个数也能表示这组数据的情况。你们想知道它是谁吗?
师:现在我们再看这组投篮数据,请同学们仔细观察,这组数据有什么特点?哪个数据最特殊?出现了多少次?(5出现的次数最多)
师:你们的眼睛真明亮,5出现的次数超过了整组数据的一半,也就是说投下5个球的人数最多。
师:同学们,像这样,在这一组数据中出现次数最多的数,我们就把它叫做这组数据的众数。这就是这节课我们学习的内容。(板书:众数)
根据你们的理解,你们认为“众数”这两个字,(板书:众数)哪个字最关键。众是什么意思呢?还记得吗?(板书:出现的次数最多。)
师:同学们,5就是这组数据的众数,因为在这一组数据中它出现的次数最多,众数5也可以反映这组数据的水平?它反映是的什么水平呢?
师:在家看看,这组同学投篮的个数集中在中哪个数?(5)所以我们说众数5反映了同学们投篮成绩的集中水平?(板书:集中水平)它受到偏大或偏小数据的影响吗?
师:下面让我们继续在生活中了解众数吧!
二、依据情境,理解众数
1、选演员
师:同学们,还有一个多月“六.一”儿童节就要到了,我相信大家一定很期盼这一天的到来。五(3)班的同学为了庆祝“六.一”儿童节,要选10名同学组成一个舞蹈队。如果你是舞蹈老师那么你觉得在选择舞蹈队员时,一般应该考虑到哪些问题?(学生回答)
(1)(课件出示)师下面是20名舞姿比较好的侯选队员的身高情况(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47
1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
根据以上数据,要从中选出10名同学组成舞蹈队,你认为舞蹈队员的身高是多少比较合适?你能试着帮老师选一选吗?请看大屏幕的要求:
(2)同桌合作探究要求:
1、先仔细观察这一组数据,看看有什么特点?并同桌合作用计算器算出平均数,中位数,找出众数。填在学习卡上。
2、同桌合作,从中选出你们认为比较合适的10名同学的身高,填在学习卡上。
3、你选择的依据是什么?
(3)汇报交流。师:现在哪一桌来说说你的答案。生:回答。
(4)做出决策
师:通过刚才的汇报交流,你觉得应该根据平均数,中位数、众数这三个统计量中的哪一个来选队员的身高好?(师:为什么你们都不根据平均数,中位数来选择舞蹈队员呢?)生:答。
师:的确你们说的那样。请看屏幕:
课件出示:
ⅰ平均数(1.475M)
① 按照平均数,这些队员身高是多少比较合适?
② 哪十名队员的身高在1.475M左右?
ⅲ 众数(1.52M)
哪十名队员的身高在1.52M左右?
师:同学们,你选出来的队员身高的确是最标准的.不知同学们是否发现,刚才你们所选舞蹈队员的身高就是按哪个统计量来选的?(众数5)。按照众数来选队员,身高基本一样,很匀称,整个舞蹈队形让人感到很整齐、很美观!
(过渡:从这一个例子可以看出来,除了平均数、中位数、众数在我们的生活中也同样有重要的作用。)
2、1分钟跳绳比赛
学校举行1分钟跳绳比赛,五(1)班、五(2)班、五(3)班8名参赛选手的成绩如下,请分别找出这三组数据的众数。
五(1)班:120 150 105 150 150 186 150 150 ( )
五(2)班:183 108 183 216 196 183 216 216 ( )
五(1班:126 157 169 200 198 224 115 215 ( )
师:在找这三组数据的众数的过程中,你发现了什么?
板书:在一组数据中,众数可能不止一个,也可能没有众数。(不唯一,可能没有)
三、联系情境,应用众数
师:看来同学们对众数有了一定的了解,现在请你
1、给鞋店经理当参谋
红蜻蜓鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的销售情况如下:
尺码
34 35 36 33 38 39 40
(1)如果你是鞋店的经理,你会关心哪个数据?(从中你有什么发现)
(2)你对鞋店的经理有什么建议?
(过渡:商品的销售也要用到众数的知识。由此看来,生活中真少不了众数呀!除了这些,生活中还有很多事例用到众数知识,只要你是生活的有心人,就会发现。)
综合练习。
师:同学们,到现在为止,我们已经认识了平均数、中位数、众数三个统计量,你们能试着用它们来解决一些问题吗?请继续看题。(课件出示)
2、判断。对的打“√”,错的打“×”。
(1)、如果一组数据的众数是7,那么这组数据中出现次数最多的是7。( )
(2)、一组数据的平均数一定大于众数。( )
(3)、一组数据的平均数、中位数、众数可能相同。( )
(4)、众数能够反映一组数据的集中情况。( )
结束语:同学们,到现在我们已经认识了平均数,中位数,众数三个统计量,那么你们对它们有多少了解呢?也就是说你懂得了平均数、中位数、众数的哪些知识。
3、请同学们分析判断,看看使用平均数、中位数、众数中哪一个统计量比较合适。
(1)调查同学们最喜欢的动画片。 ( )
(2)五(1)班有50人,五(2)班有45人,
比较两个班的数学成绩。( )
(3)在学校演讲比赛中,小红想知道自己处于 中位数
什么水平。( )
(4)面包店老板想知道哪种面包销售最好。 ( )
师:像这样的情况还有很多很多,在实际问题中,我们要学会根据题目中的要求和具体的问题灵活选择。
四、平均数、中位数、众数的区别和联系。
(过渡:通过刚才的学习,我们对平均数、中位数、众数有一定的认识,那它们有什么区别与联系呢?你们能说说吗?可能结合老师的板书说说)看来这节课同学们的收获可真不少。
众数和我们前面学过的平均数、中位数,一样,也是反映一组数据集中趋势的一个统计量。但这三量描述的角度和适用范围有所不同。综合大家的意见,老师总结如下,请看屏幕。(课件出示):
平均数:平均数是应用最广泛,用它作为一组数据的代表,比较可靠和稳定,能够反映一组数据整体水平。因为它与一组数据的每一个数都有关系,所以受组内偏大或偏小数据的影响。
中位数:中位数在一组数据的排序中处于中间的位置,在统计学分析中常扮演着“分水岭”角色。它不受偏大或偏小数据的影响,能较好的反映一组数据的一般水平,但它也有美中不足,需要对所有数据按一定的顺序进行排列才能找出。
众数:众数是对各数据出现的次数的考察,它也不受偏大或偏小数据的影响,能够较好地反映一组数据的集中情况。众数能给我们解决问题带来更大的方便。
师:课下,同学们运用我们这节课所学的知识完成最第4题的练习。
五、课堂小结
(1)今天这节课大家学得开心吗?知道大家学得开心,老师就放心了。这节课我们就上到这里,下课。
课后习题
完成课后练习题。
五年级数学复习教案二
教学准备
教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.进一步提高学生的统计技能,增强学生的统计意识。
教学重难点
教学重点:认识众数,理解众数的意义及作用。
教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。
教学过程
(一)复习旧知
1、回忆平均数及中位数的求法,指生回答。
2、求下列这组数据的平均数和中位数。生独立完成后课件出示。
(二)完成例1
1.出示例题:
五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)
1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52
师:提出集体舞的要求:身高接近,跳出的舞才更整齐。 你认为参赛队员的身高是多少比较合适?
2.学生小组合作选择10名队员。
3.根据学生汇报,师课件随机演示选择结果。
平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47
+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52
+1.52+1.52+1.52+1.52)÷20
=29.5÷20
=1.475
中位数=(1.48+1.49)÷2
=2.97÷2
=1.485
接近1.485m的同学人数太少,不适合大多数同学的
身高。最高的与最矮的相差6cm。
这组数据的中位数是1.485,身高接近1.485m的比较合适。
身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。
1 . 52 出现的次数最多,最能应这组同学的身高情况.
4.小结:以众数1.52为标准选择队员身高会比较均匀。
师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!
5.师生共同归纳众数概念。
师揭示众数的概念
一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。
6、做一做,
7、小练习:
学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:
求这次英语百词听写竞赛中学生得分的众数.
三个数据存在的数量和意义:
比较三个统计量:
(三) 学习众数的特征
师出示练习题:
1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):
19 23 26 29 28 32 34 35 41 33 31
25 27 31 36 37 24 31 29 26 30
(1)这组数据的中位数和众数各是多少?
(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?
2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:
甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5
乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9
(1)甲、乙成绩的平均数、众数分别是多少?
(2)你认为谁去参加比赛更合适?为什么?
生先独立思考,再全班交流。
师:在找三组数据的众数的过程中,你发现了什么?
生:在一组数据中,众数可能不止一个,也可能没有众数。
师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。
2、三个数据存在的数量和意义
(四)综合练习
你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。
(五)联系情境,应用众数
销售衣服问题。
师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息: 服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41
师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?
生:讨论交流,发表自己想法。
师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!
(五)拓展延伸(“生活中的数学”) 均码问题。
师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。
师:课后请同学们调查和了解一下:什么是“均码”?
(六)全课小结
教师:同学们,今天我们上了这节课你收获了什么?
五年级数学复习教案三
教学准备
教学目标
1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,
能正确判断一个数是否是3的倍数。
2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。
教学重难点
探索3的倍数的特征,使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。
教学过程
一、创设情境
课件出示:
填一填:
1、个位上的数是_________________的自然数一定
是2的倍数,也叫_________。
2、个位上的数是________的自然数一定是5的倍数.
3、一个数,如果既是2的倍数,又是5的倍数,这个数
的个位上一定是_____。这个数最小是 。
4、最小的偶数是 ,最小的奇数是 ,最大的偶数 ,最大的奇数 。
2的倍数有: 。
5的倍数有: 。
既是2的倍数又是5的倍数有:
偶数有: 。
奇数有: 。
课件出示
师:用5、6、7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?
(生:口答)
师:可以摆成既是2的倍数也是5的倍数吗?为什么?
师:同学们,我们已经能正确判断一个数是不是2或5的倍数,只要观察这个数的个位。那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。
(揭示课题:3的倍数的特征)
[设计意图]创设问题情境,既可以巩固已学知识又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快的学习新知。
二、探究新知
1、课件出示:(学生填一填)
师:学生独立填在课本19页上,然后观察。 生:汇报结果
1、课件出示:(学生填一填)
师:学生独立填在课本19页上,然后观察。 生:汇报结果
1 2 3 4 5 6 7
2、观察讨论(一):
师:同学们观察一下3的倍数的个位上的数是不是3的倍数呢?(课件出示) 生结论: 3,6,9是3的倍数,但12,15,18个位上的数就不是3的倍数。(出示课件)
师:根据一个数个位上的数字,能确定一个数是3的倍数吗?(不能)那么3的倍数究竟有什么特征呢?
3、观察讨论(二):3的倍数12和21。(课件出示)
谈话:比较观察这两个数,你能发现什么有趣的现象?(生:数字相同,数字排列的顺序不同)
师:在3的倍数中,再找几个数,把他的数字顺序改变一下,看看是不是3的倍数?你有什么发现?
生:3的倍数,改变数字的顺序后,仍然是一个3的倍数。
师:在不是3的倍数中,也有这样的数,你能把他们一组一组地排列起来吗?(13,31;14,41;23,32;25,52;)这里又说明什么呢?
生:一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数。
师:由此推想,3的倍数的特征和数字的排列顺序没有关系,那与这个数的各个数位上的数字有关吗?这里到底有什么奥秘呢?
4、探索发现规律
(1)活动:每个同学手中都有一些小棒和一张数位卡,我们在数位卡上分别来摆几个3的倍数,看看分别用了几根小棒。现在请你在3的倍数中任意选几个来摆一摆,开始。
生:小组中完成并记录,然后汇报,教师板书如:12:1+2=3
师:有什么发现?(是3的倍数)
(2)活动:下面我们反过来试试看,请你数出21根小棒,摆成一个两位数,看看这个数是不是3的倍数。(学生操作后汇报结果21:2+1=3)
师:现在你猜想什么样的数一定是3的倍数?(猜想:3的倍数,它的各位数的和一定是3的倍数)
(3)活动:为了验证这一猜想,举例,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。
5、出示总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
[设计意图]为了突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数的特征。通过活动的方式,减缓学生在概括时的思考难度。教学时,引导学生经历观察、猜测、验证的完整过程。由于学生在概括2和5的倍数的特征时,只注意到了个位数,因此,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征。但通过观察,发现这些数的个位上的数有的是3的倍数,有的不是,于是产生认知冲突。经过进一步提示,引导学生观察发现:各位上数的和是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。激发学生积极主动探究解决问题方法的兴趣。
三、练习中提升认识
通过完成“做一做”,哪些数是3的倍数?你是怎样判断的? 明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数。
练习三,4、下面哪些数是3的倍数?在下面的( )里面“√”。
42 78 111 165 655 5988 ( ) ( ) ( ) ( ) ( ) ( ) 49 95 311 82 2037 2222 ( ) ( ) ( ) ( ) ( ) ( )
1、下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。
2、 在□里填一个数字,使每个数都是3的倍数。
3、解决问题,
[设计意图]为了使学生更好地掌握3的倍数的特征,进行课堂练习时,还可以把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。 四、梳理知识,总结升华 谈话:这节课你有什么收获呢?
[设计意图]对本节课的学习做一个简单的回顾整理,形成基本的知识网络,整理学习思路,正确判断一个数是不是3的倍数的方法,为后面的学习打好基础。
四、课堂总结:
今天你有什么收获?
五、布置作业
作业: 根据3的倍数的特征找出100以内3的倍数。
猜你喜欢: